Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 15;97(2):448–454. doi: 10.1172/JCI118434

Antisense oligodeoxynucleotides selectively suppress expression of the mutant alpha 2(I) collagen allele in type IV osteogenesis imperfecta fibroblasts. A molecular approach to therapeutics of dominant negative disorders.

Q Wang 1, J C Marini 1
PMCID: PMC507036  PMID: 8567966

Abstract

We are investigating the use of antisense oligodeoxynucleotides to selectively suppress expression of the mutant type I collagen allele in osteogenesis imperfecta (OI). In this report, we target a human collagen mutation in its natural cellular context. We used cultured fibroblasts from a case of type IV OI, in which the mutant alpha 2(I) allele produces mRNA with exon 16 deleted due to a point mutation in the splice donor site. Lipid-mediated transfection was used to deliver antisense, sense and missense phosphorothioates targeted to both the abnormal mRNA exon 15/17 junction and the nuclear level point mutation. Significant suppression of the mutant protein chain and mRNA was achieved with antisense oligonucleotide to both mRNA and nuclear levels. Mutant protein was suppressed to 44-47% and mutant alpha 2(I) mRNA to 37-43% of their levels in control cells, indicating decreased mRNA as the basis for suppression. Selectivity of mutant allele suppression was better with an mRNA target: suppression was sequence specific and normal mRNA was expressed at 79% of its level in untreated cells. With a nuclear target, significant suppression of mutant mRNA occurred not only with antisense and sense, but also with missense oligonucleotide, which suppressed mutant mRNA to 60% of its level in untreated cells. We also investigated the time course of suppression of protein and mRNA in response to a 4 h transfection of antisense oligonucleotide. From 24-72 h after transfection, mutant protein was suppressed to approximately 50% of its untreated level and suppression of mutant message was significantly greater than that of normal message. The suppression achieved in these studies is insufficient for clinical intervention, but our results provide support for further development of antisense therapy as an approach to the treatment of dominant negative disorders.

Full Text

The Full Text of this article is available as a PDF (194.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernard M. P., Myers J. C., Chu M. L., Ramirez F., Eikenberry E. F., Prockop D. J. Structure of a cDNA for the pro alpha 2 chain of human type I procollagen. Comparison with chick cDNA for pro alpha 2(I) identifies structurally conserved features of the protein and the gene. Biochemistry. 1983 Mar 1;22(5):1139–1145. doi: 10.1021/bi00274a023. [DOI] [PubMed] [Google Scholar]
  2. Blake K. R., Murakami A., Spitz S. A., Glave S. A., Reddy M. P., Ts'o P. O., Miller P. S. Hybridization arrest of globin synthesis in rabbit reticulocyte lysates and cells by oligodeoxyribonucleoside methylphosphonates. Biochemistry. 1985 Oct 22;24(22):6139–6145. doi: 10.1021/bi00343a016. [DOI] [PubMed] [Google Scholar]
  3. Bonadio J., Holbrook K. A., Gelinas R. E., Jacob J., Byers P. H. Altered triple helical structure of type I procollagen in lethal perinatal osteogenesis imperfecta. J Biol Chem. 1985 Feb 10;260(3):1734–1742. [PubMed] [Google Scholar]
  4. Byers P. H., Wallis G. A., Willing M. C. Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet. 1991 Jul;28(7):433–442. doi: 10.1136/jmg.28.7.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang E. H., Miller P. S., Cushman C., Devadas K., Pirollo K. F., Ts'o P. O., Yu Z. P. Antisense inhibition of ras p21 expression that is sensitive to a point mutation. Biochemistry. 1991 Aug 27;30(34):8283–8286. doi: 10.1021/bi00098a001. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Colige A., Sokolov B. P., Nugent P., Baserga R., Prockop D. J. Use of an antisense oligonucleotide to inhibit expression of a mutated human procollagen gene (COL1A1) in transfected mouse 3T3 cells. Biochemistry. 1993 Jan 12;32(1):7–11. doi: 10.1021/bi00052a002. [DOI] [PubMed] [Google Scholar]
  8. Dominski Z., Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8673–8677. doi: 10.1073/pnas.90.18.8673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Filie J. D., Orrison B. M., Wang Q., Lewis M. B., Marini J. C. A de novo G+1-->A mutation at the alpha 2(I) exon 16 splice donor site causes skipping of exon 16 in the cDNA of one allele of an OI type IV proband. Hum Mutat. 1993;2(5):380–388. doi: 10.1002/humu.1380020510. [DOI] [PubMed] [Google Scholar]
  10. Grange D. K., Gottesman G. S., Lewis M. B., Marini J. C. Detection of point mutations in type I collagen by RNase digestion of RNA/RNA hybrids. Nucleic Acids Res. 1990 Jul 25;18(14):4227–4236. doi: 10.1093/nar/18.14.4227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inouye M. Antisense RNA: its functions and applications in gene regulation--a review. Gene. 1988 Dec 10;72(1-2):25–34. doi: 10.1016/0378-1119(88)90124-2. [DOI] [PubMed] [Google Scholar]
  12. Laptev A. V., Lu Z., Colige A., Prockop D. J. Specific inhibition of expression of a human collagen gene (COL1A1) with modified antisense oligonucleotides. The most effective target sites are clustered in double-stranded regions of the predicted secondary structure for the mRNA. Biochemistry. 1994 Sep 13;33(36):11033–11039. doi: 10.1021/bi00202a024. [DOI] [PubMed] [Google Scholar]
  13. Leonetti J. P., Machy P., Degols G., Lebleu B., Leserman L. Antibody-targeted liposomes containing oligodeoxyribonucleotides complementary to viral RNA selectively inhibit viral replication. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2448–2451. doi: 10.1073/pnas.87.7.2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Melton D. A. Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc Natl Acad Sci U S A. 1985 Jan;82(1):144–148. doi: 10.1073/pnas.82.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nishikura K., Murray J. M. Antisense RNA of proto-oncogene c-fos blocks renewed growth of quiescent 3T3 cells. Mol Cell Biol. 1987 Feb;7(2):639–649. doi: 10.1128/mcb.7.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Prockop D. J., Kivirikko K. I. Heritable diseases of collagen. N Engl J Med. 1984 Aug 9;311(6):376–386. doi: 10.1056/NEJM198408093110606. [DOI] [PubMed] [Google Scholar]
  17. Sillence D. O., Senn A., Danks D. M. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979 Apr;16(2):101–116. doi: 10.1136/jmg.16.2.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taylor N. R., Kaplan B. E., Swiderski P., Li H., Rossi J. J. Chimeric DNA-RNA hammerhead ribozymes have enhanced in vitro catalytic efficiency and increased stability in vivo. Nucleic Acids Res. 1992 Sep 11;20(17):4559–4565. doi: 10.1093/nar/20.17.4559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wagner R. W., Matteucci M. D., Lewis J. G., Gutierrez A. J., Moulds C., Froehler B. C. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science. 1993 Jun 4;260(5113):1510–1513. doi: 10.1126/science.7684856. [DOI] [PubMed] [Google Scholar]
  20. Willing M. C., Pruchno C. J., Byers P. H. Molecular heterogeneity in osteogenesis imperfecta type I. Am J Med Genet. 1993 Jan 15;45(2):223–227. doi: 10.1002/ajmg.1320450214. [DOI] [PubMed] [Google Scholar]
  21. Woolf T. M., Jennings C. G., Rebagliati M., Melton D. A. The stability, toxicity and effectiveness of unmodified and phosphorothioate antisense oligodeoxynucleotides in Xenopus oocytes and embryos. Nucleic Acids Res. 1990 Apr 11;18(7):1763–1769. doi: 10.1093/nar/18.7.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Woolf T. M., Melton D. A., Jennings C. G. Specificity of antisense oligonucleotides in vivo. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7305–7309. doi: 10.1073/pnas.89.16.7305. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES