Abstract
The presence of oxysterols in macrophages isolated from atherosclerotic tissue and the effect of oxysterols on the regulation of lipoprotein lipase (LPL) mRNA were studied. Both rabbit and human macrophages, freshly isolated from atherosclerotic aorta, show about the same distribution of oxysterols, analyzed by isotope dilution mass spectrometry, except that all three preparations of human arterial-derived macrophages contained high levels of 27-hydroxycholesterol, which was not found in rabbit macrophages. To determine if oxysterols regulate LPL expression, human monocyte-derived macrophages were incubated with different oxysterols. Incubation with 7 beta-hydroxycholesterol and 25-hydroxycholesterol resulted in a 70-75% reduction of LPL mRNA, analyzed by quantitative RT-PCR. Cholesterol and other tested oxysterols showed no effect on macrophage LPL mRNA expression compared with control. LPL activity in the medium was also reduced after exposure of the macrophages to 7 beta-hydroxycholesterol and 25-hydroxycholesterol. In conclusion, we have demonstrated accumulation of oxysterols in macrophage-derived foam cells isolated from atherosclerotic aorta. There was suppression of LPL mRNA in human monocyte-derived macrophages after incubation with 7 beta-hydroxycholesterol and 25-hydroxycholesterol. It is tempting to suggest that an exposure to oxysterols may explain our earlier observation of a low level of LPL mRNA in arterial foam cells.
Full Text
The Full Text of this article is available as a PDF (226.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baranowski A., Adams C. W., High O. B., Bowyer D. B. Connective tissue responses to oxysterols. Atherosclerosis. 1982 Feb;41(2-3):255–266. doi: 10.1016/0021-9150(82)90190-3. [DOI] [PubMed] [Google Scholar]
- Behr S. R., Kraemer F. B. Effects of activation on lipoprotein lipase secretion by macrophages. Evidence for autoregulation. J Exp Med. 1986 Oct 1;164(4):1362–1367. doi: 10.1084/jem.164.4.1362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berliner J. A., Territo M. C., Sevanian A., Ramin S., Kim J. A., Bamshad B., Esterson M., Fogelman A. M. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990 Apr;85(4):1260–1266. doi: 10.1172/JCI114562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhadra S., Arshad M. A., Rymaszewski Z., Norman E., Wherley R., Subbiah M. T. Oxidation of cholesterol moiety of low density lipoprotein in the presence of human endothelial cells or Cu+2 ions: identification of major products and their effects. Biochem Biophys Res Commun. 1991 Apr 15;176(1):431–440. doi: 10.1016/0006-291x(91)90942-z. [DOI] [PubMed] [Google Scholar]
- Björkhem I., Andersson O., Diczfalusy U., Sevastik B., Xiu R. J., Duan C., Lund E. Atherosclerosis and sterol 27-hydroxylase: evidence for a role of this enzyme in elimination of cholesterol from human macrophages. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8592–8596. doi: 10.1073/pnas.91.18.8592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Björkhem I., Henriksson-Freyschuss A., Breuer O., Diczfalusy U., Berglund L., Henriksson P. The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler Thromb. 1991 Jan-Feb;11(1):15–22. doi: 10.1161/01.atv.11.1.15. [DOI] [PubMed] [Google Scholar]
- Björkhem I., Reihnér E., Angelin B., Ewerth S., Akerlund J. E., Einarsson K. On the possible use of the serum level of 7 alpha-hydroxycholesterol as a marker for increased activity of the cholesterol 7 alpha-hydroxylase in humans. J Lipid Res. 1987 Aug;28(8):889–894. [PubMed] [Google Scholar]
- Boissonneault G. A., Hennig B., Ouyang C. M. Oxysterols, cholesterol biosynthesis, and vascular endothelial cell monolayer barrier function. Proc Soc Exp Biol Med. 1991 Mar;196(3):338–343. doi: 10.3181/00379727-196-43198. [DOI] [PubMed] [Google Scholar]
- Bondjers G., Lindén T., Fager G., Olofsson S. O., Olsson G., Wiklund O. Aortic intimal lipid content and serum lipoproteins in patients undergoing coronary by-pass surgery as related to clinical prognosis. Atherosclerosis. 1988 Aug;72(2-3):231–239. doi: 10.1016/0021-9150(88)90085-8. [DOI] [PubMed] [Google Scholar]
- Breuer O., Björkhem I. Simultaneous quantification of several cholesterol autoxidation and monohydroxylation products by isotope-dilution mass spectrometry. Steroids. 1990 Apr;55(4):185–192. doi: 10.1016/0039-128x(90)90109-o. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Dana S. E., Goldstein J. L. Cholesterol ester formation in cultured human fibroblasts. Stimulation by oxygenated sterols. J Biol Chem. 1975 May 25;250(10):4025–4027. [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell. 1975 Nov;6(3):307–316. doi: 10.1016/0092-8674(75)90182-8. [DOI] [PubMed] [Google Scholar]
- Bøyum A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol. 1976 Jun;Suppl 5:9–15. [PubMed] [Google Scholar]
- Carew T. E., Schwenke D. C., Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7725–7729. doi: 10.1073/pnas.84.21.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpenter K. L., Taylor S. E., van der Veen C., Williamson B. K., Ballantine J. A., Mitchinson M. J. Lipids and oxidised lipids in human atherosclerotic lesions at different stages of development. Biochim Biophys Acta. 1995 May 17;1256(2):141–150. doi: 10.1016/0005-2760(94)00247-v. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Chisolm G. M., Ma G., Irwin K. C., Martin L. L., Gunderson K. G., Linberg L. F., Morel D. W., DiCorleto P. E. 7 beta-hydroperoxycholest-5-en-3 beta-ol, a component of human atherosclerotic lesions, is the primary cytotoxin of oxidized human low density lipoprotein. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11452–11456. doi: 10.1073/pnas.91.24.11452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Freyschuss A., Stiko-Rahm A., Swedenborg J., Henriksson P., Björkhem I., Berglund L., Nilsson J. Antioxidant treatment inhibits the development of intimal thickening after balloon injury of the aorta in hypercholesterolemic rabbits. J Clin Invest. 1993 Apr;91(4):1282–1288. doi: 10.1172/JCI116326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
- Hennig B., Boissonneault G. A. Cholestan-3 beta,5 alpha,6 beta-triol decreases barrier function of cultured endothelial cell monolayers. Atherosclerosis. 1987 Dec;68(3):255–261. doi: 10.1016/0021-9150(87)90205-x. [DOI] [PubMed] [Google Scholar]
- Hodis H. N., Chauhan A., Hashimoto S., Crawford D. W., Sevanian A. Probucol reduces plasma and aortic wall oxysterol levels in cholesterol fed rabbits independently of its plasma cholesterol lowering effect. Atherosclerosis. 1992 Oct;96(2-3):125–134. doi: 10.1016/0021-9150(92)90059-p. [DOI] [PubMed] [Google Scholar]
- Hodis H. N., Crawford D. W., Sevanian A. Cholesterol feeding increases plasma and aortic tissue cholesterol oxide levels in parallel: further evidence for the role of cholesterol oxidation in atherosclerosis. Atherosclerosis. 1991 Aug;89(2-3):117–126. doi: 10.1016/0021-9150(91)90051-4. [DOI] [PubMed] [Google Scholar]
- Ishibashi S., Mori N., Murase T., Shimano H., Gotohda T., Kawakami M., Akanuma Y., Takaku F., Yamada N. Enhanced lipoprotein lipase secretion from human monocyte-derived macrophages caused by hypertriglyceridemic very low density lipoproteins. Arteriosclerosis. 1989 Sep-Oct;9(5):650–655. doi: 10.1161/01.atv.9.5.650. [DOI] [PubMed] [Google Scholar]
- Jialal I., Freeman D. A., Grundy S. M. Varying susceptibility of different low density lipoproteins to oxidative modification. Arterioscler Thromb. 1991 May-Jun;11(3):482–488. doi: 10.1161/01.atv.11.3.482. [DOI] [PubMed] [Google Scholar]
- Kaluzny M. A., Duncan L. A., Merritt M. V., Epps D. E. Rapid separation of lipid classes in high yield and purity using bonded phase columns. J Lipid Res. 1985 Jan;26(1):135–140. [PubMed] [Google Scholar]
- Mattsson L., Bondjers G., Wiklund O. Isolation of cell populations from arterial tissue, using monoclonal antibodies and magnetic microspheres. Atherosclerosis. 1991 Jul;89(1):25–34. doi: 10.1016/0021-9150(91)90004-m. [DOI] [PubMed] [Google Scholar]
- Mattsson L., Johansson H., Ottosson M., Bondjers G., Wiklund O. Expression of lipoprotein lipase mRNA and secretion in macrophages isolated from human atherosclerotic aorta. J Clin Invest. 1993 Oct;92(4):1759–1765. doi: 10.1172/JCI116764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morin R. J., Peng S. K. Effects of cholesterol oxidation derivatives on cholesterol esterifying and cholesteryl ester hydrolytic enzyme activity of cultured rabbit aortic smooth muscle cells. Lipids. 1989 Mar;24(3):217–220. doi: 10.1007/BF02535237. [DOI] [PubMed] [Google Scholar]
- O'Brien K. D., Deeb S. S., Ferguson M., McDonald T. O., Allen M. D., Alpers C. E., Chait A. Apolipoprotein E localization in human coronary atherosclerotic plaques by in situ hybridization and immunohistochemistry and comparison with lipoprotein lipase. Am J Pathol. 1994 Mar;144(3):538–548. [PMC free article] [PubMed] [Google Scholar]
- O'Brien K. D., Gordon D., Deeb S., Ferguson M., Chait A. Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques. J Clin Invest. 1992 May;89(5):1544–1550. doi: 10.1172/JCI115747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paik Y. K., Chang D. J., Reardon C. A., Walker M. D., Taxman E., Taylor J. M. Identification and characterization of transcriptional regulatory regions associated with expression of the human apolipoprotein E gene. J Biol Chem. 1988 Sep 15;263(26):13340–13349. [PubMed] [Google Scholar]
- Peng S. K., Phillips G. A., Xia G. Z., Morin R. J. Transport of cholesterol autoxidation products in rabbit lipoproteins. Atherosclerosis. 1987 Mar;64(1):1–6. doi: 10.1016/0021-9150(87)90047-5. [DOI] [PubMed] [Google Scholar]
- Peng S. K., Taylor C. B., Hill J. C., Morin R. J. Cholesterol oxidation derivatives and arterial endothelial damage. Atherosclerosis. 1985 Feb;54(2):121–133. doi: 10.1016/0021-9150(85)90172-8. [DOI] [PubMed] [Google Scholar]
- Pettersen K. S., Boberg K. M., Stabursvik A., Prydz H. Toxicity of oxygenated cholesterol derivatives toward cultured human umbilical vein endothelial cells. Arterioscler Thromb. 1991 Mar-Apr;11(2):423–428. doi: 10.1161/01.atv.11.2.423. [DOI] [PubMed] [Google Scholar]
- Ridgway N. D., Dawson P. A., Ho Y. K., Brown M. S., Goldstein J. L. Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J Cell Biol. 1992 Jan;116(2):307–319. doi: 10.1083/jcb.116.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenfeld M. E., Khoo J. C., Miller E., Parthasarathy S., Palinski W., Witztum J. L. Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts. J Clin Invest. 1991 Jan;87(1):90–99. doi: 10.1172/JCI115006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroepfer G. J., Jr Sterol biosynthesis. Annu Rev Biochem. 1981;50:585–621. doi: 10.1146/annurev.bi.50.070181.003101. [DOI] [PubMed] [Google Scholar]
- Sevanian A., Berliner J., Peterson H. Uptake, metabolism, and cytotoxicity of isomeric cholesterol-5,6-epoxides in rabbit aortic endothelial cells. J Lipid Res. 1991 Jan;32(1):147–155. [PubMed] [Google Scholar]
- Sofer O., Fainaru M., Schafer Z., Goldman R. Regulation of lipoprotein lipase secretion in murine macrophages during foam cell formation in vitro. Effect of triglyceride-rich lipoproteins. Arterioscler Thromb. 1992 Dec;12(12):1458–1466. doi: 10.1161/01.atv.12.12.1458. [DOI] [PubMed] [Google Scholar]
- Sopher O., Goldman R. Bacterial lipopolysaccharide suppresses the expression of lipoprotein lipase in murine macrophages: a process independent of tumor necrosis factor or interleukin 1. Immunol Lett. 1987 Jul;15(3):261–265. doi: 10.1016/0165-2478(87)90034-4. [DOI] [PubMed] [Google Scholar]
- Spooner P. M., Garrison M. M., Scow R. O. Regulation of mammary and adipose tissue lipoprotein lipase and blood triacylglycerol in rats during late pregnancy. Effect of prostaglandins. J Clin Invest. 1977 Sep;60(3):702–708. doi: 10.1172/JCI108822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stalenhoef A. F., Kleinveld H. A., Kosmeijer-Schuil T. G., Demacker P. N., Katan M. B. In vivo oxidised cholesterol in atherosclerosis. Atherosclerosis. 1993 Jan 4;98(1):113–114. doi: 10.1016/0021-9150(93)90228-m. [DOI] [PubMed] [Google Scholar]
- Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
- Wiklund O., Mattsson L., Björnheden T., Camejo G., Bondjers G. Uptake and degradation of low density lipoproteins in atherosclerotic rabbit aorta: role of local LDL modification. J Lipid Res. 1991 Jan;32(1):55–62. [PubMed] [Google Scholar]
- Wion K. L., Kirchgessner T. G., Lusis A. J., Schotz M. C., Lawn R. M. Human lipoprotein lipase complementary DNA sequence. Science. 1987 Mar 27;235(4796):1638–1641. doi: 10.1126/science.3823907. [DOI] [PubMed] [Google Scholar]
- Ylä-Herttuala S., Lipton B. A., Rosenfeld M. E., Goldberg I. J., Steinberg D., Witztum J. L. Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10143–10147. doi: 10.1073/pnas.88.22.10143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang H. F., Basra H. J., Steinbrecher U. P. Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. J Lipid Res. 1990 Aug;31(8):1361–1369. [PubMed] [Google Scholar]
- Zhou Q., Smith T. L., Kummerow F. A. Cytotoxicity of oxysterols on cultured smooth muscle cells from human umbilical arteries. Proc Soc Exp Biol Med. 1993 Jan;202(1):75–80. doi: 10.3181/00379727-202-43514. [DOI] [PubMed] [Google Scholar]