Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 15;97(2):515–521. doi: 10.1172/JCI118443

In vivo trafficking of adoptively transferred interleukin-2 expanded tumor-infiltrating lymphocytes and peripheral blood lymphocytes. Results of a double gene marking trial.

J S Economou 1, A S Belldegrun 1, J Glaspy 1, E M Toloza 1, R Figlin 1, J Hobbs 1, N Meldon 1, R Kaboo 1, C L Tso 1, A Miller 1, R Lau 1, W McBride 1, R C Moen 1
PMCID: PMC507045  PMID: 8567975

Abstract

Adoptive immunotherapy with tumor-infiltrating lymphocytes (TIL) and IL-2 appears to produce dramatic regressions in patients with metastatic melanoma and renal cancer. However, the in vivo mechanism of TIL function is not known. We conducted an UCLA Human Subject Protection Committee, Recombinant DNA Advisory Committee, and FDA-approved clinical trial using genetically-marked TIL to test the hypothesis that these cells have unique, tumor-specific in vivo trafficking patterns. TIL and PBL (as a control effector cell population) were isolated and expanded in parallel in vitro in IL-2-containing medium for 4-6 wk. During the expansion, TIL and PBL were separately transduced with the amphotropic retroviral vectors LNL6 and G1Na. Transduced TIL and PBL were coinfused into patients and their respective numbers measured in tumor, peripheral blood, and normal tissues; integrated provirus could be quantitated and distinguished by DNA PCR. Nine patients were treated (six melanoma, three renal) and received between 4.5 x 10(8) and 1.24 x 10(10) total cells. Both "marked" TIL and PBL could be detected circulating in the peripheral blood, in some patients for up to 99 d after infusion. Marked TIL and/or PBL could be detected in tumor biopsies in six of nine patients as early as day 6 and as late as day 99 after infusion. No convincing pattern of preferential trafficking of TIL vs. PBL to tumor was noted. Moreover, concurrent biopsies of muscle, fat, and skin demonstrated the presence of TIL/PBL in comparable or greater numbers than in tumor in five patients. The results of this double gene marking trial provide interesting insights into the life span and trafficking of adoptively transferred lymphocytes, but do not support the hypothesis that TIL specifically traffic to tumor deposits.

Full Text

The Full Text of this article is available as a PDF (232.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold P., Hyatt C., Johnson S., Hines K., Korcak L., Sanders M., Lotze M., Topalian S., Yang J., Rosenberg S. A. Lysis of autologous melanoma cells by tumor-infiltrating lymphocytes: association with clinical response. J Natl Cancer Inst. 1991 Jul 3;83(13):932–937. doi: 10.1093/jnci/83.13.932. [DOI] [PubMed] [Google Scholar]
  2. Ames I. H., Gagne G. M., Garcia A. M., John P. A., Scatorchia G. M., Tomar R. H., McAfee J. G. Preferential homing of tumor-infiltrating lymphocytes in tumor-bearing mice. Cancer Immunol Immunother. 1989;29(2):93–100. doi: 10.1007/BF00199283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson T. M., Ibayashi Y., Holmes E. C., Golub S. H. Modification of natural killer activity of lymphocytes infiltrating human lung cancers. Cancer Immunol Immunother. 1987;25(1):65–68. doi: 10.1007/BF00199303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barth R. J., Jr, Mulé J. J., Spiess P. J., Rosenberg S. A. Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+ tumor-infiltrating lymphocytes. J Exp Med. 1991 Mar 1;173(3):647–658. doi: 10.1084/jem.173.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belldegrun A., Muul L. M., Rosenberg S. A. Interleukin 2 expanded tumor-infiltrating lymphocytes in human renal cell cancer: isolation, characterization, and antitumor activity. Cancer Res. 1988 Jan 1;48(1):206–214. [PubMed] [Google Scholar]
  6. Bender M. A., Palmer T. D., Gelinas R. E., Miller A. D. Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region. J Virol. 1987 May;61(5):1639–1646. doi: 10.1128/jvi.61.5.1639-1646.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  8. Dickover R. E., Donovan R. M., Goldstein E., Dandekar S., Bush C. E., Carlson J. R. Quantitation of human immunodeficiency virus DNA by using the polymerase chain reaction. J Clin Microbiol. 1990 Sep;28(9):2130–2133. doi: 10.1128/jcm.28.9.2130-2133.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eremin O., Coombs R. R., Ashby J. Lymphocytes infiltrating human breast cancers lack K-cell activity and show low levels of NK-cell activity. Br J Cancer. 1981 Aug;44(2):166–176. doi: 10.1038/bjc.1981.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fisher B., Packard B. S., Read E. J., Carrasquillo J. A., Carter C. S., Topalian S. L., Yang J. C., Yolles P., Larson S. M., Rosenberg S. A. Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol. 1989 Feb;7(2):250–261. doi: 10.1200/JCO.1989.7.2.250. [DOI] [PubMed] [Google Scholar]
  11. Griffith K. D., Read E. J., Carrasquillo J. A., Carter C. S., Yang J. C., Fisher B., Aebersold P., Packard B. S., Yu M. Y., Rosenberg S. A. In vivo distribution of adoptively transferred indium-111-labeled tumor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma. J Natl Cancer Inst. 1989 Nov 15;81(22):1709–1717. doi: 10.1093/jnci/81.22.1709. [DOI] [PubMed] [Google Scholar]
  12. Haapala D. K., Robey W. G., Oroszlan S. D., Tsai W. P. Isolation from cats of an endogenous type C virus with a novel envelope glycoprotein. J Virol. 1985 Mar;53(3):827–833. doi: 10.1128/jvi.53.3.827-833.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holmes E. C. Immunology of tumor infiltrating lymphocytes. Ann Surg. 1985 Feb;201(2):158–163. doi: 10.1097/00000658-198502000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kasid A., Morecki S., Aebersold P., Cornetta K., Culver K., Freeman S., Director E., Lotze M. T., Blaese R. M., Anderson W. F. Human gene transfer: characterization of human tumor-infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer in man. Proc Natl Acad Sci U S A. 1990 Jan;87(1):473–477. doi: 10.1073/pnas.87.1.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kellogg D. E., Sninsky J. J., Kwok S. Quantitation of HIV-1 proviral DNA relative to cellular DNA by the polymerase chain reaction. Anal Biochem. 1990 Sep;189(2):202–208. doi: 10.1016/0003-2697(90)90108-l. [DOI] [PubMed] [Google Scholar]
  16. Klein E., Svedmyr E., Jondal M., Vanky F. Functional studies on tumor-infiltrating lymphocytes in man. Isr J Med Sci. 1977 Jul;13(7):747–752. [PubMed] [Google Scholar]
  17. Kradin R. L., Kurnick J. T., Lazarus D. S., Preffer F. I., Dubinett S. M., Pinto C. E., Gifford J., Davidson E., Grove B., Callahan R. J. Tumour-infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet. 1989 Mar 18;1(8638):577–580. doi: 10.1016/s0140-6736(89)91609-7. [DOI] [PubMed] [Google Scholar]
  18. Merrouche Y., Negrier S., Bain C., Combaret V., Mercatello A., Coronel B., Moskovtchenko J. F., Tolstoshev P., Moen R., Philip T. Clinical application of retroviral gene transfer in oncology: results of a French study with tumor-infiltrating lymphocytes transduced with the gene of resistance to neomycin. J Clin Oncol. 1995 Feb;13(2):410–418. doi: 10.1200/JCO.1995.13.2.410. [DOI] [PubMed] [Google Scholar]
  19. Miller A. D., Rosman G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989 Oct;7(9):980-2, 984-6, 989-90. [PMC free article] [PubMed] [Google Scholar]
  20. Miller A. R., Skotzko M. J., Rhoades K., Belldegrun A. S., Tso C. L., Kaboo R., McBride W. H., Jacobs E., Kohn D. B., Moen R. Simultaneous use of two retroviral vectors in human gene marking trials: feasibility and potential applications. Hum Gene Ther. 1992 Dec;3(6):619–624. doi: 10.1089/hum.1992.3.6-619. [DOI] [PubMed] [Google Scholar]
  21. Morecki S., Topalian S. L., Myers W. W., Okrongly D., Okarma T. B., Rosenberg S. A. Separation and growth of human CD4+ and CD8+ tumor-infiltrating lymphocytes and peripheral blood mononuclear cells by direct positive panning on covalently attached monoclonal antibody-coated flasks. J Biol Response Mod. 1990 Oct;9(5):463–474. [PubMed] [Google Scholar]
  22. Moy P. M., Holmes E. C., Golub S. H. Depression of natural killer cytotoxic activity in lymphocytes infiltrating human pulmonary tumors. Cancer Res. 1985 Jan;45(1):57–60. [PubMed] [Google Scholar]
  23. Niitsuma M., Golub S. H., Edelstein R., Holmes E. C. Lymphoid cells infiltrating human pulmonary tumors: effect of intralesional BCG injection. J Natl Cancer Inst. 1981 Nov;67(5):997–1003. [PubMed] [Google Scholar]
  24. Rabinowich H., Cohen R., Bruderman I., Steiner Z., Klajman A. Functional analysis of mononuclear cells infiltrating into tumors: lysis of autologous human tumor cells by cultured infiltrating lymphocytes. Cancer Res. 1987 Jan 1;47(1):173–177. [PubMed] [Google Scholar]
  25. Rosenberg S. A., Aebersold P., Cornetta K., Kasid A., Morgan R. A., Moen R., Karson E. M., Lotze M. T., Yang J. C., Topalian S. L. Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990 Aug 30;323(9):570–578. doi: 10.1056/NEJM199008303230904. [DOI] [PubMed] [Google Scholar]
  26. Rosenberg S. A., Lotze M. T., Yang J. C., Topalian S. L., Chang A. E., Schwartzentruber D. J., Aebersold P., Leitman S., Linehan W. M., Seipp C. A. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst. 1993 Apr 21;85(8):622–632. doi: 10.1093/jnci/85.8.622. [DOI] [PubMed] [Google Scholar]
  27. Rosenberg S. A., Packard B. S., Aebersold P. M., Solomon D., Topalian S. L., Toy S. T., Simon P., Lotze M. T., Yang J. C., Seipp C. A. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988 Dec 22;319(25):1676–1680. doi: 10.1056/NEJM198812223192527. [DOI] [PubMed] [Google Scholar]
  28. Rosenberg S. A., Spiess P., Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986 Sep 19;233(4770):1318–1321. doi: 10.1126/science.3489291. [DOI] [PubMed] [Google Scholar]
  29. Steger G. G., Pierce W. C., Figlin R., Czernin J., Kaboo R., DeKernion J. B., Okarma T., Belldegrun A. Patterns of cytokine release of unselected and CD8+ selected renal cell carcinoma tumor-infiltrating lymphocytes (TIL). Evidence for enhanced specific killing of tumor necrosis factor-secreting/IL-6 nonsecreting TIL in vitro and correlation with complete response in vivo. Clin Immunol Immunopathol. 1994 Aug;72(2):237–247. doi: 10.1006/clin.1994.1137. [DOI] [PubMed] [Google Scholar]
  30. Taneja S. S., Pierce W., Figlin R., Belldegrun A. Immunotherapy for renal cell carcinoma: the era of interleukin-2-based treatment. Urology. 1995 Jun;45(6):911–924. doi: 10.1016/s0090-4295(99)80108-3. [DOI] [PubMed] [Google Scholar]
  31. Topalian S. L., Muul L. M., Solomon D., Rosenberg S. A. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Methods. 1987 Aug 24;102(1):127–141. doi: 10.1016/s0022-1759(87)80018-2. [DOI] [PubMed] [Google Scholar]
  32. Topalian S. L., Solomon D., Avis F. P., Chang A. E., Freerksen D. L., Linehan W. M., Lotze M. T., Robertson C. N., Seipp C. A., Simon P. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study. J Clin Oncol. 1988 May;6(5):839–853. doi: 10.1200/JCO.1988.6.5.839. [DOI] [PubMed] [Google Scholar]
  33. Tötterman T. H., Häyry P., Saksela E., Timonen T., Eklund B. Cytological and functional analysis of inflammatory infiltrates in human malignant tumors. II. Functional investigations of the infiltrating inflammatory cells. Eur J Immunol. 1978 Dec;8(12):872–875. doi: 10.1002/eji.1830081209. [DOI] [PubMed] [Google Scholar]
  34. Vose B. M., Ferguson R., Moore M. Mitogen responsiveness and inhibitory activity of mesenteric lymph node cells. Conditioned medium containing T cell growth factor reverses suppressor function. Cancer Immunol Immunother. 1982;13(2):105–111. doi: 10.1007/BF00205309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vose B. M., Moore M. Suppressor cell activity of lymphocytes infiltrating human lung and breast tumours. Int J Cancer. 1979 Nov 15;24(5):579–585. doi: 10.1002/ijc.2910240510. [DOI] [PubMed] [Google Scholar]
  36. Vose B. M., Vánky F., Argov S., Klein E. Natural cytotoxicity in man: activity of lymph node and tumor-infiltrating lymphocytes. Eur J Immunol. 1977 Nov;7(11):353–357. doi: 10.1002/eji.1830071102. [DOI] [PubMed] [Google Scholar]
  37. Vose B. M., Vánky F., Klein E. Human tumour--lymphocyte interaction in vitro. V. Comparison of the reactivity of tumour-infiltrating, blood and lymph-node lymphocytes with autologous tumour cells. Int J Cancer. 1977 Dec 15;20(6):895–902. doi: 10.1002/ijc.2910200612. [DOI] [PubMed] [Google Scholar]
  38. Wallace P. K., Palmer L. D., Perry-Lalley D., Bolton E. S., Alexander R. B., Horan P. K., Yang J. C., Muirhead K. A. Mechanisms of adoptive immunotherapy: improved methods for in vivo tracking of tumor-infiltrating lymphocytes and lymphokine-activated killer cells. Cancer Res. 1993 May 15;53(10 Suppl):2358–2367. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES