Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 15;97(2):533–539. doi: 10.1172/JCI118446

Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice.

V J Kadambi 1, S Ponniah 1, J M Harrer 1, B D Hoit 1, G W Dorn 2nd 1, R A Walsh 1, E G Kranias 1
PMCID: PMC507048  PMID: 8567978

Abstract

Phospholamban is the regulator of the cardiac sarcoplasmic reticulum (SR) Ca(2+)-ATPase activity and an important modulator of basal contractility in the heart. To determine whether all the SR Ca(2+)-ATPase enzymes are subject to regulation by phospholamban in vivo, transgenic mice were generated which overexpressed phospholamban in the heart, driven by the cardiac-specific alpha-myosin heavy chain promoter. Quantitative immunoblotting revealed a twofold increase in the phospholamban protein levels in transgenic hearts compared to wild type littermate hearts. The transgenic mice showed no phenotypic alterations and no changes in heart/body weight, heart/lung weight, and cardiomyocyte size. Isolated unloaded cardiac myocytes from transgenic mice exhibited diminished shortening fraction (63%) and decreased rates of shortening (64%) and relengthening (55%) compared to wild type (100%) cardiomyocytes. The decreases in contractile parameters of transgenic cardiomyocytes reflected decreases in the amplitude (83%) of the Ca2+ signal and prolongation (131%) in the time for decay of the Ca2+ signal, which was associated with a decrease in the apparent affinity of the SR Ca(2+)-ATPase for Ca2+ (56%), compared to wild type (100%) cardiomyocytes. In vivo analysis of left ventricular systolic function using M mode and pulsed-wave Doppler echocardiography revealed decreases in fractional shortening (79%) and the normalized mean velocity of circumferential shortening (67%) in transgenic mice compared to wild type (100%) mice. The differences in contractile parameters and Ca2+ kinetics in transgenic cardiomyocytes and the depressed left ventricular systolic function in transgenic mice were abolished upon isoproterenol stimulation. These findings indicate that a fraction of the Ca(2+)-ATPases in native SR is not under regulation by phospholamban. Expression of additional phospholamban molecules results in: (a) inhibition of SR Ca2+ transport; (b) decreases in systolic Ca2+ levels and contractile parameters in ventricular myocytes; and (c) depression of basal left ventricular systolic function in vivo.

Full Text

The Full Text of this article is available as a PDF (236.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  2. Colyer J., Wang J. H. Dependence of cardiac sarcoplasmic reticulum calcium pump activity on the phosphorylation status of phospholamban. J Biol Chem. 1991 Sep 15;266(26):17486–17493. [PubMed] [Google Scholar]
  3. Cory C. R., Grange R. W., Houston M. E. Role of sarcoplasmic reticulum in loss of load-sensitive relaxation in pressure overload cardiac hypertrophy. Am J Physiol. 1994 Jan;266(1 Pt 2):H68–H78. doi: 10.1152/ajpheart.1994.266.1.H68. [DOI] [PubMed] [Google Scholar]
  4. Davis B. A., Edes I., Gupta R. C., Young E. F., Kim H. W., Steenaart N. A., Szymanska G., Kranias E. G. The role of phospholamban in the regulation of calcium transport by cardiac sarcoplasmic reticulum. Mol Cell Biochem. 1990 Dec 20;99(2):83–88. doi: 10.1007/BF00230337. [DOI] [PubMed] [Google Scholar]
  5. Dorn G. W., 2nd, Robbins J., Ball N., Walsh R. A. Myosin heavy chain regulation and myocyte contractile depression after LV hypertrophy in aortic-banded mice. Am J Physiol. 1994 Jul;267(1 Pt 2):H400–H405. doi: 10.1152/ajpheart.1994.267.1.H400. [DOI] [PubMed] [Google Scholar]
  6. Ganim J. R., Luo W., Ponniah S., Grupp I., Kim H. W., Ferguson D. G., Kadambi V., Neumann J. C., Doetschman T., Kranias E. G. Mouse phospholamban gene expression during development in vivo and in vitro. Circ Res. 1992 Nov;71(5):1021–1030. doi: 10.1161/01.res.71.5.1021. [DOI] [PubMed] [Google Scholar]
  7. Garvey J. L., Kranias E. G., Solaro R. J. Phosphorylation of C-protein, troponin I and phospholamban in isolated rabbit hearts. Biochem J. 1988 Feb 1;249(3):709–714. doi: 10.1042/bj2490709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harrer J. M., Kiss E., Kranias E. G. Application of the immunoblot technique for quantitation of protein levels in cardiac homogenates. Biotechniques. 1995 Jun;18(6):995–998. [PubMed] [Google Scholar]
  9. Hicks M. J., Shigekawa M., Katz A. M. Mechanism by which cyclic adenosine 3':5'-monophosphate-dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum. Circ Res. 1979 Mar;44(3):384–391. doi: 10.1161/01.res.44.3.384. [DOI] [PubMed] [Google Scholar]
  10. Hoit B. D., Khoury S. F., Kranias E. G., Ball N., Walsh R. A. In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circ Res. 1995 Sep;77(3):632–637. doi: 10.1161/01.res.77.3.632. [DOI] [PubMed] [Google Scholar]
  11. Kim H. W., Steenaart N. A., Ferguson D. G., Kranias E. G. Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2(+)-ATPase with phospholamban in phospholipid vesicles. J Biol Chem. 1990 Jan 25;265(3):1702–1709. [PubMed] [Google Scholar]
  12. Kirchberger M. A., Tada M., Katz A. M. Adenosine 3':5'-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J Biol Chem. 1974 Oct 10;249(19):6166–6173. [PubMed] [Google Scholar]
  13. Kiss E., Jakab G., Kranias E. G., Edes I. Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res. 1994 Aug;75(2):245–251. doi: 10.1161/01.res.75.2.245. [DOI] [PubMed] [Google Scholar]
  14. Koss K. L., Ponniah S., Jones W. K., Grupp I. L., Kranias E. G. Differential phospholamban gene expression in murine cardiac compartments. Molecular and physiological analyses. Circ Res. 1995 Aug;77(2):342–353. doi: 10.1161/01.res.77.2.342. [DOI] [PubMed] [Google Scholar]
  15. Kranias E. G. Regulation of calcium transport by protein phosphatase activity associated with cardiac sarcoplasmic reticulum. J Biol Chem. 1985 Sep 15;260(20):11006–11010. [PubMed] [Google Scholar]
  16. Kranias E. G., Solaro R. J. Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature. 1982 Jul 8;298(5870):182–184. doi: 10.1038/298182a0. [DOI] [PubMed] [Google Scholar]
  17. Laird P. W., Zijderveld A., Linders K., Rudnicki M. A., Jaenisch R., Berns A. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 1991 Aug 11;19(15):4293–4293. doi: 10.1093/nar/19.15.4293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Le Peuch C. J., Haiech J., Demaille J. G. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium--calmodulin-dependent phosphorylations. Biochemistry. 1979 Nov 13;18(23):5150–5157. doi: 10.1021/bi00590a019. [DOI] [PubMed] [Google Scholar]
  19. Lenihan D. J., Gerson M. C., Hoit B. D., Walsh R. A. Mechanisms, diagnosis, and treatment of diastolic heart failure. Am Heart J. 1995 Jul;130(1):153–166. doi: 10.1016/0002-8703(95)90251-1. [DOI] [PubMed] [Google Scholar]
  20. Lindemann J. P., Jones L. R., Hathaway D. R., Henry B. G., Watanabe A. M. beta-Adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem. 1983 Jan 10;258(1):464–471. [PubMed] [Google Scholar]
  21. Louis C. F., Turnquist J., Jarvis B. Phospholamban stoichiometry in canine cardiac muscle sarcoplasmic reticulum. Neurochem Res. 1987 Oct;12(10):937–941. doi: 10.1007/BF00966316. [DOI] [PubMed] [Google Scholar]
  22. Luo W., Grupp I. L., Harrer J., Ponniah S., Grupp G., Duffy J. J., Doetschman T., Kranias E. G. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res. 1994 Sep;75(3):401–409. doi: 10.1161/01.res.75.3.401. [DOI] [PubMed] [Google Scholar]
  23. Milano C. A., Allen L. F., Rockman H. A., Dolber P. C., McMinn T. R., Chien K. R., Johnson T. D., Bond R. A., Lefkowitz R. J. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science. 1994 Apr 22;264(5158):582–586. doi: 10.1126/science.8160017. [DOI] [PubMed] [Google Scholar]
  24. Milano C. A., Dolber P. C., Rockman H. A., Bond R. A., Venable M. E., Allen L. F., Lefkowitz R. J. Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10109–10113. doi: 10.1073/pnas.91.21.10109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Movsesian M. A., Nishikawa M., Adelstein R. S. Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase. Stimulation of cardiac sarcoplasmic reticulum calcium uptake. J Biol Chem. 1984 Jul 10;259(13):8029–8032. [PubMed] [Google Scholar]
  26. Presti C. F., Jones L. R., Lindemann J. P. Isoproterenol-induced phosphorylation of a 15-kilodalton sarcolemmal protein in intact myocardium. J Biol Chem. 1985 Mar 25;260(6):3860–3867. [PubMed] [Google Scholar]
  27. Rockman H. A., Ono S., Ross R. S., Jones L. R., Karimi M., Bhargava V., Ross J., Jr, Chien K. R. Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2694–2698. doi: 10.1073/pnas.91.7.2694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Solaro R. J., Briggs F. N. Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle. Calcium binding. Circ Res. 1974 Apr;34(4):531–540. doi: 10.1161/01.res.34.4.531. [DOI] [PubMed] [Google Scholar]
  29. Subramaniam A., Jones W. K., Gulick J., Wert S., Neumann J., Robbins J. Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice. J Biol Chem. 1991 Dec 25;266(36):24613–24620. [PubMed] [Google Scholar]
  30. Tada M., Inui M., Yamada M., Kadoma M., Kuzuya T., Abe H., Kakiuchi S. Effects of phospholamban phosphorylation catalyzed by adenosine 3':5'-monophosphate- and calmodulin-dependent protein kinases on calcium transport ATPase of cardiac sarcoplasmic reticulum. J Mol Cell Cardiol. 1983 May;15(5):335–346. doi: 10.1016/0022-2828(83)91345-7. [DOI] [PubMed] [Google Scholar]
  31. Walter C. A., Nasr-Schirf D., Luna V. J. Identification of transgenic mice carrying the CAT gene with PCR amplification. Biotechniques. 1989 Nov-Dec;7(10):1065–1070. [PubMed] [Google Scholar]
  32. Wegener A. D., Simmerman H. K., Lindemann J. P., Jones L. R. Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to beta-adrenergic stimulation. J Biol Chem. 1989 Jul 5;264(19):11468–11474. [PubMed] [Google Scholar]
  33. Williford D. J., Sharma V. K., Korth M., Sheu S. S. Spatial heterogeneity of intracellular Ca2+ concentration in nonbeating guinea pig ventricular myocytes. Circ Res. 1990 Jan;66(1):241–248. doi: 10.1161/01.res.66.1.241. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES