Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 15;97(2):562–576. doi: 10.1172/JCI118449

Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs.

J Z Sun 1, X L Tang 1, S W Park 1, Y Qiu 1, J F Turrens 1, R Bolli 1
PMCID: PMC507051  PMID: 8567981

Abstract

Conscious pigs underwent a sequence of 10 2-min coronary occlusions, each separated by 2 min of reperfusion, for three consecutive days (days 1, 2, and 3). On day 1, pigs received an i.v. infusion of a combination of antioxidants (superoxide dismutase, catalase, and N-2 mercaptopropionyl glycine; group II, n = 9), nisoldipine (group III, n = 6), or vehicle (group I [controls], n = 9). In the control group, systolic wall thickening (WTh) in the ischemic-reperfused region on day 1 remained significantly depressed for 4 h after the 10th reperfusion, indicating myocardial "stunning." On days 2 and 3, however, the recovery of WTh improved markedly, so that the total deficit of WTh decreased by 53% on day 2 and 56% on day 3 compared with day 1 (P < 0.01), indicating the development of a powerful cardioprotective response (late preconditioning against stunning). In the anti-oxidant-treated group, the total deficit of WTh on day 1 was 54% less than in the control group (P < 0.01). On day 2, the total deficit of WTh was 85% greater than that observed on day 1 and similar to that observed on day 1 in the control group. On day 3, the total deficit of WTh was 58% less than that noted on day 2 (P < 0.01). In the nisoldipine-treated group, the total deficit of WTh on day 1 was 53% less than that noted in controls (P < 0.01). On days 2 and 3, the total deficit of WTh was similar to the corresponding values in the control group. These results demonstrate that: (a) in the conscious pig, antioxidant therapy completely blocks the development of late preconditioning against stunning, indicating that the production of reactive oxygen species (ROS) on day 1 is the mechanism whereby ischemia induces the protective response observed on day 2; (b) antioxidant therapy markedly attenuates myocardial stunning on day 1, indicating that ROS play an important pathogenetic role in postischemic dysfunction in the porcine heart despite the lack of xanthine oxidase; (c) although the administration of a calcium-channel antagonist (nisoldipine) is as effective as antioxidant therapy in attenuating myocardial stunning on day 1, it has no effect on late preconditioning on day 2, indicating that the ability of antioxidants to block late preconditioning is not a nonspecific result of the mitigation of postischemic dysfunction on day 1. Generation of ROS during reperfusion is generally viewed as a deleterious process. Our finding that ROS contribute to the genesis of myocardial stunning but, at the same time, trigger the development of late preconditioning against stunning supports a complex pathophysiological paradigm, in which ROS play an immediate injurious role (as mediators of stunning) followed by a useful function (as mediators of subsequent preconditioning).

Full Text

The Full Text of this article is available as a PDF (269.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abadeh S., Case P. C., Harrison R. Demonstration of xanthine oxidase in human heart. Biochem Soc Trans. 1992 Nov;20(4):346S–346S. doi: 10.1042/bst020346s. [DOI] [PubMed] [Google Scholar]
  2. BERGMEYER H. U. Zur Messung von Katalase-Aktivitäten. Biochem Z. 1955;327(4):255–258. [PubMed] [Google Scholar]
  3. Becker J., Mezger V., Courgeon A. M., Best-Belpomme M. Hydrogen peroxide activates immediate binding of a Drosophila factor to DNA heat-shock regulatory element in vivo and in vitro. Eur J Biochem. 1990 May 20;189(3):553–558. doi: 10.1111/j.1432-1033.1990.tb15522.x. [DOI] [PubMed] [Google Scholar]
  4. Bolli R., Jeroudi M. O., Patel B. S., DuBose C. M., Lai E. K., Roberts R., McCay P. B. Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4695–4699. doi: 10.1073/pnas.86.12.4695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bolli R. Mechanism of myocardial "stunning". Circulation. 1990 Sep;82(3):723–738. doi: 10.1161/01.cir.82.3.723. [DOI] [PubMed] [Google Scholar]
  6. Bolli R., Patel B. S., Jeroudi M. O., Lai E. K., McCay P. B. Demonstration of free radical generation in "stunned" myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone. J Clin Invest. 1988 Aug;82(2):476–485. doi: 10.1172/JCI113621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bolli R., Zughaib M., Li X. Y., Tang X. L., Sun J. Z., Triana J. F., McCay P. B. Recurrent ischemia in the canine heart causes recurrent bursts of free radical production that have a cumulative effect on contractile function. A pathophysiological basis for chronic myocardial "stunning". J Clin Invest. 1995 Aug;96(2):1066–1084. doi: 10.1172/JCI118093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown J. M., Grosso M. A., Terada L. S., Whitman G. J., Banerjee A., White C. W., Harken A. H., Repine J. E. Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2516–2520. doi: 10.1073/pnas.86.7.2516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown J. M., White C. W., Terada L. S., Grosso M. A., Shanley P. F., Mulvin D. W., Banerjee A., Whitman G. J., Harken A. H., Repine J. E. Interleukin 1 pretreatment decreases ischemia/reperfusion injury. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5026–5030. doi: 10.1073/pnas.87.13.5026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Buchwald A., Klein H. H., Lindert S., Pich S., Nebendahl K., Wiegand V., Kreuzer H. Effect of intracoronary superoxide dismutase on regional function in stunned myocardium. J Cardiovasc Pharmacol. 1989 Feb;13(2):258–264. doi: 10.1097/00005344-198902000-00013. [DOI] [PubMed] [Google Scholar]
  11. Charlat M. I., O'Neill P. G., Egan J. M., Abernethy D. R., Michael L. H., Myers M. L., Roberts R., Bolli R. Evidence for a pathogenetic role of xanthine oxidase in the "stunned" myocardium. Am J Physiol. 1987 Mar;252(3 Pt 2):H566–H577. doi: 10.1152/ajpheart.1987.252.3.H566. [DOI] [PubMed] [Google Scholar]
  12. Cohen M. V., Liu G. S., Downey J. M. Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation. 1991 Jul;84(1):341–349. doi: 10.1161/01.cir.84.1.341. [DOI] [PubMed] [Google Scholar]
  13. Downey J. M., Cohen M. V., Ytrehus K., Liu Y. Cellular mechanisms in ischemic preconditioning: the role of adenosine and protein kinase C. Ann N Y Acad Sci. 1994 Jun 17;723:82–98. [PubMed] [Google Scholar]
  14. Downey J. M., Miura T., Eddy L. J., Chambers D. E., Mellert T., Hearse D. J., Yellon D. M. Xanthine oxidase is not a source of free radicals in the ischemic rabbit heart. J Mol Cell Cardiol. 1987 Nov;19(11):1053–1060. doi: 10.1016/s0022-2828(87)80350-4. [DOI] [PubMed] [Google Scholar]
  15. Eddy L. J., Stewart J. R., Jones H. P., Engerson T. D., McCord J. M., Downey J. M. Free radical-producing enzyme, xanthine oxidase, is undetectable in human hearts. Am J Physiol. 1987 Sep;253(3 Pt 2):H709–H711. doi: 10.1152/ajpheart.1987.253.3.H709. [DOI] [PubMed] [Google Scholar]
  16. Ehring T., Böhm M., Heusch G. The calcium antagonist nisoldipine improves the functional recovery of reperfused myocardium only when given before ischemia. J Cardiovasc Pharmacol. 1992 Jul;20(1):63–74. [PubMed] [Google Scholar]
  17. Gopalakrishna R., Anderson W. B. Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6758–6762. doi: 10.1073/pnas.86.17.6758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grill H. P., Zweier J. L., Kuppusamy P., Weisfeldt M. L., Flaherty J. T. Direct measurement of myocardial free radical generation in an in vivo model: effects of postischemic reperfusion and treatment with human recombinant superoxide dismutase. J Am Coll Cardiol. 1992 Dec;20(7):1604–1611. doi: 10.1016/0735-1097(92)90457-x. [DOI] [PubMed] [Google Scholar]
  19. Hagar J. M., Hale S. L., Kloner R. A. Effect of preconditioning ischemia on reperfusion arrhythmias after coronary artery occlusion and reperfusion in the rat. Circ Res. 1991 Jan;68(1):61–68. doi: 10.1161/01.res.68.1.61. [DOI] [PubMed] [Google Scholar]
  20. Heufelder A. E., Wenzel B. E., Gorman C. A., Bahn R. S. Detection, cellular localization, and modulation of heat shock proteins in cultured fibroblasts from patients with extrathyroidal manifestations of Graves' disease. J Clin Endocrinol Metab. 1991 Oct;73(4):739–745. doi: 10.1210/jcem-73-4-739. [DOI] [PubMed] [Google Scholar]
  21. Hoshida S., Kuzuya T., Fuji H., Yamashita N., Oe H., Hori M., Suzuki K., Taniguchi N., Tada M. Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol. 1993 Jan;264(1 Pt 2):H33–H39. doi: 10.1152/ajpheart.1993.264.1.H33. [DOI] [PubMed] [Google Scholar]
  22. Iwamoto T., Miura T., Adachi T., Noto T., Ogawa T., Tsuchida A., Iimura O. Myocardial infarct size-limiting effect of ischemic preconditioning was not attenuated by oxygen free-radical scavengers in the rabbit. Circulation. 1991 Mar;83(3):1015–1022. doi: 10.1161/01.cir.83.3.1015. [DOI] [PubMed] [Google Scholar]
  23. Jennings R. B., Murry C. E., Reimer K. A. Preconditioning myocardium with ischemia. Cardiovasc Drugs Ther. 1991 Oct;5(5):933–938. doi: 10.1007/BF00053555. [DOI] [PubMed] [Google Scholar]
  24. Jeroudi M. O., Triana F. J., Patel B. S., Bolli R. Effect of superoxide dismutase and catalase, given separately, on myocardial "stunning". Am J Physiol. 1990 Sep;259(3 Pt 2):H889–H901. doi: 10.1152/ajpheart.1990.259.3.H889. [DOI] [PubMed] [Google Scholar]
  25. Katoh S., Toyama J., Kodama I., Akita T., Abe T. Deferoxamine, an iron chelator, reduces myocardial injury and free radical generation in isolated neonatal rabbit hearts subjected to global ischaemia-reperfusion. J Mol Cell Cardiol. 1992 Nov;24(11):1267–1275. doi: 10.1016/0022-2828(92)93093-y. [DOI] [PubMed] [Google Scholar]
  26. Knowlton A. A., Eberli F. R., Brecher P., Romo G. M., Owen A., Apstein C. S. A single myocardial stretch or decreased systolic fiber shortening stimulates the expression of heat shock protein 70 in the isolated, erythrocyte-perfused rabbit heart. J Clin Invest. 1991 Dec;88(6):2018–2025. doi: 10.1172/JCI115529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Koerner J. E., Anderson B. A., Dage R. C. Protection against postischemic myocardial dysfunction in anesthetized rabbits with scavengers of oxygen-derived free radicals: superoxide dismutase plus catalase, N-2-mercaptopropionyl glycine and captopril. J Cardiovasc Pharmacol. 1991 Feb;17(2):185–191. doi: 10.1097/00005344-199102000-00002. [DOI] [PubMed] [Google Scholar]
  28. Kukreja R. C., Kontos M. C., Loesser K. E., Batra S. K., Qian Y. Z., Gbur C. J., Jr, Naseem S. A., Jesse R. L., Hess M. L. Oxidant stress increases heat shock protein 70 mRNA in isolated perfused rat heart. Am J Physiol. 1994 Dec;267(6 Pt 2):H2213–H2219. doi: 10.1152/ajpheart.1994.267.6.H2213. [DOI] [PubMed] [Google Scholar]
  29. Kuzuya T., Hoshida S., Yamashita N., Fuji H., Oe H., Hori M., Kamada T., Tada M. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res. 1993 Jun;72(6):1293–1299. doi: 10.1161/01.res.72.6.1293. [DOI] [PubMed] [Google Scholar]
  30. Li X. Y., McCay P. B., Zughaib M., Jeroudi M. O., Triana J. F., Bolli R. Demonstration of free radical generation in the "stunned" myocardium in the conscious dog and identification of major differences between conscious and open-chest dogs. J Clin Invest. 1993 Aug;92(2):1025–1041. doi: 10.1172/JCI116608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Liu G. S., Thornton J., Van Winkle D. M., Stanley A. W., Olsson R. A., Downey J. M. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation. 1991 Jul;84(1):350–356. doi: 10.1161/01.cir.84.1.350. [DOI] [PubMed] [Google Scholar]
  32. Marber M. S., Latchman D. S., Walker J. M., Yellon D. M. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 1993 Sep;88(3):1264–1272. doi: 10.1161/01.cir.88.3.1264. [DOI] [PubMed] [Google Scholar]
  33. Masuda A., Longo D. L., Kobayashi Y., Appella E., Oppenheim J. J., Matsushima K. Induction of mitochondrial manganese superoxide dismutase by interleukin 1. FASEB J. 1988 Dec;2(15):3087–3091. doi: 10.1096/fasebj.2.15.3263930. [DOI] [PubMed] [Google Scholar]
  34. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  35. Mergner G. W., Weglicki W. B., Kramer J. H. Postischemic free radical production in the venous blood of the regionally ischemic swine heart. Effect of deferoxamine. Circulation. 1991 Nov;84(5):2079–2090. doi: 10.1161/01.cir.84.5.2079. [DOI] [PubMed] [Google Scholar]
  36. Miura T., Downey J. M., Ooiwa H., Ogawa S., Adachi T., Noto T., Shizukuda Y., Iimura O. Progression of myocardial infarction in a collateral flow deficient species. Jpn Heart J. 1989 Sep;30(5):695–708. doi: 10.1536/ihj.30.695. [DOI] [PubMed] [Google Scholar]
  37. Miyamae M., Fujiwara H., Kida M., Yokota R., Tanaka M., Katsuragawa M., Hasegawa K., Ohura M., Koga K., Yabuuchi Y. Preconditioning improves energy metabolism during reperfusion but does not attenuate myocardial stunning in porcine hearts. Circulation. 1993 Jul;88(1):223–234. doi: 10.1161/01.cir.88.1.223. [DOI] [PubMed] [Google Scholar]
  38. Murry C. E., Jennings R. B., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986 Nov;74(5):1124–1136. doi: 10.1161/01.cir.74.5.1124. [DOI] [PubMed] [Google Scholar]
  39. Murry C. E., Richard V. J., Jennings R. B., Reimer K. A. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol. 1991 Mar;260(3 Pt 2):H796–H804. doi: 10.1152/ajpheart.1991.260.3.H796. [DOI] [PubMed] [Google Scholar]
  40. Muxfeldt M., Schaper W. The activity of xanthine oxidase in heart of pigs, guinea pigs, rabbits, rats, and humans. Basic Res Cardiol. 1987 Sep-Oct;82(5):486–492. doi: 10.1007/BF01907096. [DOI] [PubMed] [Google Scholar]
  41. Ovize M., Kloner R. A., Przyklenk K. Stretch preconditions canine myocardium. Am J Physiol. 1994 Jan;266(1 Pt 2):H137–H146. doi: 10.1152/ajpheart.1994.266.1.H137. [DOI] [PubMed] [Google Scholar]
  42. Ovize M., Przyklenk K., Hale S. L., Kloner R. A. Preconditioning does not attenuate myocardial stunning. Circulation. 1992 Jun;85(6):2247–2254. doi: 10.1161/01.cir.85.6.2247. [DOI] [PubMed] [Google Scholar]
  43. Podzuweit T., Braun W., Müller A., Schaper W. Arrhythmias and infarction in the ischemic pig heart are not mediated by xanthine oxidase-derived free oxygen radicals. Basic Res Cardiol. 1987 Sep-Oct;82(5):493–505. doi: 10.1007/BF01907097. [DOI] [PubMed] [Google Scholar]
  44. Polla B. S. A role for heat shock proteins in inflammation? Immunol Today. 1988 May;9(5):134–137. doi: 10.1016/0167-5699(88)91199-1. [DOI] [PubMed] [Google Scholar]
  45. Privalle C. T., Beyer W. F., Jr, Fridovich I. Anaerobic induction of ProMn-superoxide dismutase in Escherichia coli. J Biol Chem. 1989 Feb 15;264(5):2758–2763. [PubMed] [Google Scholar]
  46. Richard V., Tron C., Thuillez C. Ischaemic preconditioning is not mediated by oxygen derived free radicals in rats. Cardiovasc Res. 1993 Nov;27(11):2016–2021. doi: 10.1093/cvr/27.11.2016. [DOI] [PubMed] [Google Scholar]
  47. Richter H. E., Loewen P. C. Induction of catalase in Escherichia coli by ascorbic acid involves hydrogen peroxide. Biochem Biophys Res Commun. 1981 Jun 16;100(3):1039–1046. doi: 10.1016/0006-291x(81)91928-8. [DOI] [PubMed] [Google Scholar]
  48. Rushmore T. H., Morton M. R., Pickett C. B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991 Jun 25;266(18):11632–11639. [PubMed] [Google Scholar]
  49. Sekili S., McCay P. B., Li X. Y., Zughaib M., Sun J. Z., Tang L., Thornby J. I., Bolli R. Direct evidence that the hydroxyl radical plays a pathogenetic role in myocardial "stunning" in the conscious dog and demonstration that stunning can be markedly attenuated without subsequent adverse effects. Circ Res. 1993 Oct;73(4):705–723. doi: 10.1161/01.res.73.4.705. [DOI] [PubMed] [Google Scholar]
  50. Sharma M. K., Buettner G. R., Spencer K. T., Kerber R. E. Ascorbyl free radical as a real-time marker of free radical generation in briefly ischemic and reperfused hearts. An electron paramagnetic resonance study. Circ Res. 1994 Apr;74(4):650–658. doi: 10.1161/01.res.74.4.650. [DOI] [PubMed] [Google Scholar]
  51. Shiki K., Hearse D. J. Preconditioning of ischemic myocardium: reperfusion-induced arrhythmias. Am J Physiol. 1987 Dec;253(6 Pt 2):H1470–H1476. doi: 10.1152/ajpheart.1987.253.6.H1470. [DOI] [PubMed] [Google Scholar]
  52. Spitz D. R., Dewey W. C., Li G. C. Hydrogen peroxide or heat shock induces resistance to hydrogen peroxide in Chinese hamster fibroblasts. J Cell Physiol. 1987 Jun;131(3):364–373. doi: 10.1002/jcp.1041310308. [DOI] [PubMed] [Google Scholar]
  53. Stevens J. B., Autor A. P. Induction of superoxide dismutase by oxygen in neonatal rat lung. J Biol Chem. 1977 May 25;252(10):3509–3514. [PubMed] [Google Scholar]
  54. Sun J. Z., Kaur H., Halliwell B., Li X. Y., Bolli R. Use of aromatic hydroxylation of phenylalanine to measure production of hydroxyl radicals after myocardial ischemia in vivo. Direct evidence for a pathogenetic role of the hydroxyl radical in myocardial stunning. Circ Res. 1993 Sep;73(3):534–549. doi: 10.1161/01.res.73.3.534. [DOI] [PubMed] [Google Scholar]
  55. Sun J. Z., Tang X. L., Knowlton A. A., Park S. W., Qiu Y., Bolli R. Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. J Clin Invest. 1995 Jan;95(1):388–403. doi: 10.1172/JCI117667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Walker D. M., Yellon D. M. Ischaemic preconditioning: from mechanisms to exploitation. Cardiovasc Res. 1992 Aug;26(8):734–739. doi: 10.1093/cvr/26.8.734. [DOI] [PubMed] [Google Scholar]
  57. Wong G. H., Goeddel D. V. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science. 1988 Nov 11;242(4880):941–944. doi: 10.1126/science.3263703. [DOI] [PubMed] [Google Scholar]
  58. Zweier J. L., Kuppusamy P., Williams R., Rayburn B. K., Smith D., Weisfeldt M. L., Flaherty J. T. Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J Biol Chem. 1989 Nov 15;264(32):18890–18895. [PubMed] [Google Scholar]
  59. Zweier J. L. Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem. 1988 Jan 25;263(3):1353–1357. [PubMed] [Google Scholar]
  60. de Jong J. W., van der Meer P., Nieukoop A. S., Huizer T., Stroeve R. J., Bos E. Xanthine oxidoreductase activity in perfused hearts of various species, including humans. Circ Res. 1990 Sep;67(3):770–773. doi: 10.1161/01.res.67.3.770. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES