Abstract
Whereas mobilization of intracellular Ca2+ stimulates neuronal adenylyl cyclase via Ca2+/calmodulin, mobilized Ca2+ directly inhibits adenylyl cyclase in other tissues. To determine the physiologic role of the Ca(2+)-dependent interaction between Na+/Ca2+ exchange and beta-adrenergic signal transduction in the intact heart, digoxin (0.3 mg/kg) was administered intravenously in rabbits. 30 min after the administration, digoxin impaired the peak left ventricular dP/dt response to dobutamine infusions by up to 38% as compared with control rabbits. This impairment was not caused by changes in either beta-adrenergic receptor number or in the functional activity of stimulatory guanine nucleotide-binding protein. It was associated with 33-36% reductions in basal and stimulated adenylyl cyclase activities. Animals treated with calcium gluconate (20 mg/kg/min for 30 min) also demonstrated similar reductions in adenylyl cyclase activities. In addition, increasing the free Ca2+ concentration progressively inhibited adenylyl cyclase activity in the control, digoxin-treated, and calcium gluconate-treated sarcolemma preparations in vitro. Moreover, digoxin and calcium gluconate pretreatment blunted the increase in cAMP in myocardial tissue after dobutamine infusion in vivo. Thus, digoxin rapidly reduces beta-adrenergic contractile response in rabbit hearts. This reduction may reflect an inhibition of adenylyl cyclase by Ca2+ mobilized via Na+/Ca2+ exchange.
Full Text
The Full Text of this article is available as a PDF (212.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bersohn M. M., Philipson K. D., Fukushima J. Y. Sodium-calcium exchange and sarcolemmal enzymes in ischemic rabbit hearts. Am J Physiol. 1982 May;242(5):C288–C295. doi: 10.1152/ajpcell.1982.242.5.C288. [DOI] [PubMed] [Google Scholar]
- Boyajian C. L., Garritsen A., Cooper D. M. Bradykinin stimulates Ca2+ mobilization in NCB-20 cells leading to direct inhibition of adenylylcyclase. A novel mechanism for inhibition of cAMP production. J Biol Chem. 1991 Mar 15;266(8):4995–5003. [PubMed] [Google Scholar]
- Chetkovich D. M., Gray R., Johnston D., Sweatt J. D. N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6467–6471. doi: 10.1073/pnas.88.15.6467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colvin R. A., Oibo J. A., Allen R. A. Calcium inhibition of cardiac adenylyl cyclase. Evidence for two distinct sites of inhibition. Cell Calcium. 1991 Jan;12(1):19–27. doi: 10.1016/0143-4160(91)90081-o. [DOI] [PubMed] [Google Scholar]
- Cooper D. M., Ahlijanian M. K., Perez-Reyes E. Calmodulin plays a dominant role in determining neurotransmitter regulation of neuronal adenylate cyclase. J Cell Biochem. 1988 Apr;36(4):417–427. doi: 10.1002/jcb.240360410. [DOI] [PubMed] [Google Scholar]
- Cooper D. M., Mons N., Karpen J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 1995 Mar 30;374(6521):421–424. doi: 10.1038/374421a0. [DOI] [PubMed] [Google Scholar]
- Corr P. B., Witkowski F. X., Sobel B. E. Mechanisms contributing to malignant dysrhythmias induced by ischemia in the cat. J Clin Invest. 1978 Jan;61(1):109–119. doi: 10.1172/JCI108908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeBernardi M. A., Seki T., Brooker G. Inhibition of cAMP accumulation by intracellular calcium mobilization in C6-2B cells stably transfected with substance K receptor cDNA. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9257–9261. doi: 10.1073/pnas.88.20.9257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debernardi M. A., Munshi R., Brooker G. Ca2+ inhibition of beta-adrenergic receptor- and forskolin-stimulated cAMP accumulation in C6-2B rat glioma cells is independent of protein kinase C. Mol Pharmacol. 1993 Mar;43(3):451–458. [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garbarg M., Schwartz J. C. Synergism between histamine H1- and H2-receptors in the cAMP response in guinea pig brain slices: effects of phorbol esters and calcium. Mol Pharmacol. 1988 Jan;33(1):38–43. [PubMed] [Google Scholar]
- Gwathmey J. K., Copelas L., MacKinnon R., Schoen F. J., Feldman M. D., Grossman W., Morgan J. P. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res. 1987 Jul;61(1):70–76. doi: 10.1161/01.res.61.1.70. [DOI] [PubMed] [Google Scholar]
- Honma M., Satoh T., Takezawa J., Ui M. An ultrasensitive method for the simultaneous determination of cyclic AMP and cyclic GMP in small-volume samples from blood and tissue. Biochem Med. 1977 Dec;18(3):257–273. doi: 10.1016/0006-2944(77)90060-6. [DOI] [PubMed] [Google Scholar]
- Iwase T., Murakami T., Tomita T., Miki S., Nagai K., Sasayama S. Ischemic preconditioning is associated with a delay in ischemia-induced reduction of beta-adrenergic signal transduction in rabbit hearts. Circulation. 1993 Dec;88(6):2827–2837. doi: 10.1161/01.cir.88.6.2827. [DOI] [PubMed] [Google Scholar]
- Kusuoka H., Marban E. Cellular mechanisms of myocardial stunning. Annu Rev Physiol. 1992;54:243–256. doi: 10.1146/annurev.ph.54.030192.001331. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Murphy J. G., Smith T. W., Marsh J. D. Mechanisms of reoxygenation-induced calcium overload in cultured chick embryo heart cells. Am J Physiol. 1988 Jun;254(6 Pt 2):H1133–H1141. doi: 10.1152/ajpheart.1988.254.6.H1133. [DOI] [PubMed] [Google Scholar]
- Narayanan N., Lussier B., French M., Moor B., Kraicer J. Growth hormone-releasing factor-sensitive adenylate cyclase system of purified somatotrophs: effects of guanine nucleotides, somatostatin, calcium, and magnesium. Endocrinology. 1989 Jan;124(1):484–495. doi: 10.1210/endo-124-1-484. [DOI] [PubMed] [Google Scholar]
- Näbauer M., Callewaert G., Cleemann L., Morad M. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science. 1989 May 19;244(4906):800–803. doi: 10.1126/science.2543067. [DOI] [PubMed] [Google Scholar]
- Robinson J. P., Kendall D. A. No role for phospholipase A2 and protein kinase C in the potentiation by alpha-adrenoceptors of beta-adrenoceptor-mediated cyclic AMP formation in rat brain. J Neurochem. 1989 Aug;53(2):542–550. doi: 10.1111/j.1471-4159.1989.tb07367.x. [DOI] [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Sheu S. S., Fozzard H. A. Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol. 1982 Sep;80(3):325–351. doi: 10.1085/jgp.80.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. A., Griffin M., Mireylees S. E., Long R. G. The inhibition of human duodenal adenylate cyclase activity by Ca2+ and the effects of EGTA. FEBS Lett. 1993 Jul 26;327(2):137–140. doi: 10.1016/0014-5793(93)80157-p. [DOI] [PubMed] [Google Scholar]
- Steenbergen C., Perlman M. E., London R. E., Murphy E. Mechanism of preconditioning. Ionic alterations. Circ Res. 1993 Jan;72(1):112–125. doi: 10.1161/01.res.72.1.112. [DOI] [PubMed] [Google Scholar]
- Sternweis P. C., Northup J. K., Smigel M. D., Gilman A. G. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem. 1981 Nov 25;256(22):11517–11526. [PubMed] [Google Scholar]
- Tada M., Kirchberger M. A., Iorio J. M., Katz A. M. Control of cardiac sarcolemmal adenylate cyclase and sodium, potassium-activated adenosinetriphosphatase activities. Circ Res. 1975 Jan;36(1):8–17. doi: 10.1161/01.res.36.1.8. [DOI] [PubMed] [Google Scholar]
- Tani M. Mechanisms of Ca2+ overload in reperfused ischemic myocardium. Annu Rev Physiol. 1990;52:543–559. doi: 10.1146/annurev.ph.52.030190.002551. [DOI] [PubMed] [Google Scholar]
- Tani M., Neely J. R. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ Res. 1989 Oct;65(4):1045–1056. doi: 10.1161/01.res.65.4.1045. [DOI] [PubMed] [Google Scholar]
- Yoshimasa T., Sibley D. R., Bouvier M., Lefkowitz R. J., Caron M. G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature. 1987 May 7;327(6117):67–70. doi: 10.1038/327067a0. [DOI] [PubMed] [Google Scholar]
- Yoshimura M., Cooper D. M. Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6716–6720. doi: 10.1073/pnas.89.15.6716. [DOI] [PMC free article] [PubMed] [Google Scholar]
