Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):6–13. doi: 10.1172/JCI118407

Digoxin reduces beta-adrenergic contractile response in rabbit hearts. Ca(2+)-dependent inhibition of adenylyl cyclase activity via Na+/Ca2+ exchange.

K Nagai 1, T Murakami 1, T Iwase 1, T Tomita 1, S Sasayama 1
PMCID: PMC507056  PMID: 8550851

Abstract

Whereas mobilization of intracellular Ca2+ stimulates neuronal adenylyl cyclase via Ca2+/calmodulin, mobilized Ca2+ directly inhibits adenylyl cyclase in other tissues. To determine the physiologic role of the Ca(2+)-dependent interaction between Na+/Ca2+ exchange and beta-adrenergic signal transduction in the intact heart, digoxin (0.3 mg/kg) was administered intravenously in rabbits. 30 min after the administration, digoxin impaired the peak left ventricular dP/dt response to dobutamine infusions by up to 38% as compared with control rabbits. This impairment was not caused by changes in either beta-adrenergic receptor number or in the functional activity of stimulatory guanine nucleotide-binding protein. It was associated with 33-36% reductions in basal and stimulated adenylyl cyclase activities. Animals treated with calcium gluconate (20 mg/kg/min for 30 min) also demonstrated similar reductions in adenylyl cyclase activities. In addition, increasing the free Ca2+ concentration progressively inhibited adenylyl cyclase activity in the control, digoxin-treated, and calcium gluconate-treated sarcolemma preparations in vitro. Moreover, digoxin and calcium gluconate pretreatment blunted the increase in cAMP in myocardial tissue after dobutamine infusion in vivo. Thus, digoxin rapidly reduces beta-adrenergic contractile response in rabbit hearts. This reduction may reflect an inhibition of adenylyl cyclase by Ca2+ mobilized via Na+/Ca2+ exchange.

Full Text

The Full Text of this article is available as a PDF (212.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bersohn M. M., Philipson K. D., Fukushima J. Y. Sodium-calcium exchange and sarcolemmal enzymes in ischemic rabbit hearts. Am J Physiol. 1982 May;242(5):C288–C295. doi: 10.1152/ajpcell.1982.242.5.C288. [DOI] [PubMed] [Google Scholar]
  2. Boyajian C. L., Garritsen A., Cooper D. M. Bradykinin stimulates Ca2+ mobilization in NCB-20 cells leading to direct inhibition of adenylylcyclase. A novel mechanism for inhibition of cAMP production. J Biol Chem. 1991 Mar 15;266(8):4995–5003. [PubMed] [Google Scholar]
  3. Chetkovich D. M., Gray R., Johnston D., Sweatt J. D. N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6467–6471. doi: 10.1073/pnas.88.15.6467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colvin R. A., Oibo J. A., Allen R. A. Calcium inhibition of cardiac adenylyl cyclase. Evidence for two distinct sites of inhibition. Cell Calcium. 1991 Jan;12(1):19–27. doi: 10.1016/0143-4160(91)90081-o. [DOI] [PubMed] [Google Scholar]
  5. Cooper D. M., Ahlijanian M. K., Perez-Reyes E. Calmodulin plays a dominant role in determining neurotransmitter regulation of neuronal adenylate cyclase. J Cell Biochem. 1988 Apr;36(4):417–427. doi: 10.1002/jcb.240360410. [DOI] [PubMed] [Google Scholar]
  6. Cooper D. M., Mons N., Karpen J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 1995 Mar 30;374(6521):421–424. doi: 10.1038/374421a0. [DOI] [PubMed] [Google Scholar]
  7. Corr P. B., Witkowski F. X., Sobel B. E. Mechanisms contributing to malignant dysrhythmias induced by ischemia in the cat. J Clin Invest. 1978 Jan;61(1):109–119. doi: 10.1172/JCI108908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeBernardi M. A., Seki T., Brooker G. Inhibition of cAMP accumulation by intracellular calcium mobilization in C6-2B cells stably transfected with substance K receptor cDNA. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9257–9261. doi: 10.1073/pnas.88.20.9257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Debernardi M. A., Munshi R., Brooker G. Ca2+ inhibition of beta-adrenergic receptor- and forskolin-stimulated cAMP accumulation in C6-2B rat glioma cells is independent of protein kinase C. Mol Pharmacol. 1993 Mar;43(3):451–458. [PubMed] [Google Scholar]
  10. Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garbarg M., Schwartz J. C. Synergism between histamine H1- and H2-receptors in the cAMP response in guinea pig brain slices: effects of phorbol esters and calcium. Mol Pharmacol. 1988 Jan;33(1):38–43. [PubMed] [Google Scholar]
  12. Gwathmey J. K., Copelas L., MacKinnon R., Schoen F. J., Feldman M. D., Grossman W., Morgan J. P. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res. 1987 Jul;61(1):70–76. doi: 10.1161/01.res.61.1.70. [DOI] [PubMed] [Google Scholar]
  13. Honma M., Satoh T., Takezawa J., Ui M. An ultrasensitive method for the simultaneous determination of cyclic AMP and cyclic GMP in small-volume samples from blood and tissue. Biochem Med. 1977 Dec;18(3):257–273. doi: 10.1016/0006-2944(77)90060-6. [DOI] [PubMed] [Google Scholar]
  14. Iwase T., Murakami T., Tomita T., Miki S., Nagai K., Sasayama S. Ischemic preconditioning is associated with a delay in ischemia-induced reduction of beta-adrenergic signal transduction in rabbit hearts. Circulation. 1993 Dec;88(6):2827–2837. doi: 10.1161/01.cir.88.6.2827. [DOI] [PubMed] [Google Scholar]
  15. Kusuoka H., Marban E. Cellular mechanisms of myocardial stunning. Annu Rev Physiol. 1992;54:243–256. doi: 10.1146/annurev.ph.54.030192.001331. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  18. Murphy J. G., Smith T. W., Marsh J. D. Mechanisms of reoxygenation-induced calcium overload in cultured chick embryo heart cells. Am J Physiol. 1988 Jun;254(6 Pt 2):H1133–H1141. doi: 10.1152/ajpheart.1988.254.6.H1133. [DOI] [PubMed] [Google Scholar]
  19. Narayanan N., Lussier B., French M., Moor B., Kraicer J. Growth hormone-releasing factor-sensitive adenylate cyclase system of purified somatotrophs: effects of guanine nucleotides, somatostatin, calcium, and magnesium. Endocrinology. 1989 Jan;124(1):484–495. doi: 10.1210/endo-124-1-484. [DOI] [PubMed] [Google Scholar]
  20. Näbauer M., Callewaert G., Cleemann L., Morad M. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science. 1989 May 19;244(4906):800–803. doi: 10.1126/science.2543067. [DOI] [PubMed] [Google Scholar]
  21. Robinson J. P., Kendall D. A. No role for phospholipase A2 and protein kinase C in the potentiation by alpha-adrenoceptors of beta-adrenoceptor-mediated cyclic AMP formation in rat brain. J Neurochem. 1989 Aug;53(2):542–550. doi: 10.1111/j.1471-4159.1989.tb07367.x. [DOI] [PubMed] [Google Scholar]
  22. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  23. Sheu S. S., Fozzard H. A. Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol. 1982 Sep;80(3):325–351. doi: 10.1085/jgp.80.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith J. A., Griffin M., Mireylees S. E., Long R. G. The inhibition of human duodenal adenylate cyclase activity by Ca2+ and the effects of EGTA. FEBS Lett. 1993 Jul 26;327(2):137–140. doi: 10.1016/0014-5793(93)80157-p. [DOI] [PubMed] [Google Scholar]
  25. Steenbergen C., Perlman M. E., London R. E., Murphy E. Mechanism of preconditioning. Ionic alterations. Circ Res. 1993 Jan;72(1):112–125. doi: 10.1161/01.res.72.1.112. [DOI] [PubMed] [Google Scholar]
  26. Sternweis P. C., Northup J. K., Smigel M. D., Gilman A. G. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem. 1981 Nov 25;256(22):11517–11526. [PubMed] [Google Scholar]
  27. Tada M., Kirchberger M. A., Iorio J. M., Katz A. M. Control of cardiac sarcolemmal adenylate cyclase and sodium, potassium-activated adenosinetriphosphatase activities. Circ Res. 1975 Jan;36(1):8–17. doi: 10.1161/01.res.36.1.8. [DOI] [PubMed] [Google Scholar]
  28. Tani M. Mechanisms of Ca2+ overload in reperfused ischemic myocardium. Annu Rev Physiol. 1990;52:543–559. doi: 10.1146/annurev.ph.52.030190.002551. [DOI] [PubMed] [Google Scholar]
  29. Tani M., Neely J. R. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ Res. 1989 Oct;65(4):1045–1056. doi: 10.1161/01.res.65.4.1045. [DOI] [PubMed] [Google Scholar]
  30. Yoshimasa T., Sibley D. R., Bouvier M., Lefkowitz R. J., Caron M. G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature. 1987 May 7;327(6117):67–70. doi: 10.1038/327067a0. [DOI] [PubMed] [Google Scholar]
  31. Yoshimura M., Cooper D. M. Cloning and expression of a Ca(2+)-inhibitable adenylyl cyclase from NCB-20 cells. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6716–6720. doi: 10.1073/pnas.89.15.6716. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES