Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):81–91. doi: 10.1172/JCI118410

Comparison of the time courses of insulin and the portal signal on hepatic glucose and glycogen metabolism in the conscious dog.

M J Pagliassotti 1, L C Holste 1, M C Moore 1, D W Neal 1, A D Cherrington 1
PMCID: PMC507065  PMID: 8550854

Abstract

To investigate the temporal response of the liver to insulin and portal glucose delivery, somatostatin was infused into four groups of 42-h-fasted, conscious dogs (n = 6/group), basal insulin and glucagon were replaced intraportally, and hyperglycemia was created via a peripheral glucose infusion for 90 min (period 1). This was followed by a 240-min experimental period (period 2) in which hyperglycemia was matched to period 1 and either no changes were made (CON), a fourfold rise in insulin was created (INS), a portion of the glucose (22.4 mumol.kg-1.min-1) was infused via the portal vein (Po), or a fourfold rise in insulin was created in combination with portal glucose infusion (INSPo). Arterial insulin levels were similar in all groups during period 1 (approximately 45 pM) and were 45 +/- 9, 154 +/- 20, 43 +/- 7, and 128 +/- 14 pM during period 2 in CON, INS, Po, and INSPo, respectively. The hepatic glucose load was similar between periods and among groups (approximately 278 mumol.kg-1.min-1). Net hepatic glucose output was similar among groups during period 1 (approximately 0.1 mumol.kg-1.min-1) and did not change significantly in CON during period 2. In INS net hepatic glucose uptake (NHGU; mumol.kg-1.min-1) was -3.8 +/- 3.3 at 15 min of period 2 and did not reach a maximum (-15.9 +/- 6.6) until 90 min. In contrast, NHGU reached a maximum of -13.0 +/- 3.7 in Po after only 15 min of period 2. In INSPo, NHGU reached a maximum (-23.6 +/- 3.5) at 60 min. Liver glycogen accumulation during period 2 was 21 +/- 10, 84 +/- 17, 65 +/- 16, and 134 +/- 17 mumol/gram in CON, INS, Po, and INSPo, respectively. The increment (period 1 to period 2) in the active form of liver glycogen synthase was 0.7 +/- 0.4, 6.5 +/- 1.2, 2.8 +/- 1.0, and 8.5 +/- 1.3% in CON, INS, Po, and INSPo, respectively. Thus, in contrast to insulin, the portal signal rapidly activates NHGU. In addition, the portal signal independent of a rise in insulin, can cause glycogen accumulation in the liver.

Full Text

The Full Text of this article is available as a PDF (236.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abumrad N. N., Cherrington A. D., Williams P. E., Lacy W. W., Rabin D. Absorption and disposition of a glucose load in the conscious dog. Am J Physiol. 1982 Jun;242(6):E398–E406. doi: 10.1152/ajpendo.1982.242.6.E398. [DOI] [PubMed] [Google Scholar]
  2. Adkins-Marshall B., Pagliassotti M. J., Asher J. R., Connolly C. C., Neal D. W., Williams P. E., Myers S. R., Hendrick G. K., Adkins R. B., Jr, Cherrington A. D. Role of hepatic nerves in response of liver to intraportal glucose delivery in dogs. Am J Physiol. 1992 May;262(5 Pt 1):E679–E686. doi: 10.1152/ajpendo.1992.262.5.E679. [DOI] [PubMed] [Google Scholar]
  3. Adkins B. A., Myers S. R., Hendrick G. K., Stevenson R. W., Williams P. E., Cherrington A. D. Importance of the route of intravenous glucose delivery to hepatic glucose balance in the conscious dog. J Clin Invest. 1987 Feb;79(2):557–565. doi: 10.1172/JCI112847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aguilar-Parada E., Eisentraut A. M., Unger R. H. Pancreatic glucagon secretion in normal and diabetic subjects. Am J Med Sci. 1969 Jun;257(6):415–419. doi: 10.1097/00000441-196906000-00008. [DOI] [PubMed] [Google Scholar]
  5. Allsop J. R., Wolfe R. R., Burke J. F. The realiability of rates of glucose appearance in vivo calculated from constant tracer infusions. Biochem J. 1978 Jun 15;172(3):407–416. doi: 10.1042/bj1720407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BRUN C. A rapid method for the determination of para-aminohippuric acid in kidney function tests. J Lab Clin Med. 1951 Jun;37(6):955–958. [PubMed] [Google Scholar]
  7. Bergman R. N., Beir J. R., Hourigan P. M. Intraportal glucose infusion matched to oral glucose absorption. Lack of evidence for "gut factor" involvement in hepatic glucose storage. Diabetes. 1982 Jan;31(1):27–35. doi: 10.2337/diab.31.1.27. [DOI] [PubMed] [Google Scholar]
  8. Bergman R. N., Finegood D. T., Ader M. Assessment of insulin sensitivity in vivo. Endocr Rev. 1985 Winter;6(1):45–86. doi: 10.1210/edrv-6-1-45. [DOI] [PubMed] [Google Scholar]
  9. Chan T. M., Exton J. H. A rapid method for the determination of glycogen content and radioactivity in small quantities of tissue or isolated hepatocytes. Anal Biochem. 1976 Mar;71(1):96–105. doi: 10.1016/0003-2697(76)90014-2. [DOI] [PubMed] [Google Scholar]
  10. Cherrington A. D., Stevenson R. W., Steiner K. E., Davis M. A., Myers S. R., Adkins B. A., Abumrad N. N., Williams P. E. Insulin, glucagon, and glucose as regulators of hepatic glucose uptake and production in vivo. Diabetes Metab Rev. 1987 Jan;3(1):307–332. doi: 10.1002/dmr.5610030114. [DOI] [PubMed] [Google Scholar]
  11. Cobelli C., Mari A., Ferrannini E. Non-steady state: error analysis of Steele's model and developments for glucose kinetics. Am J Physiol. 1987 May;252(5 Pt 1):E679–E689. doi: 10.1152/ajpendo.1987.252.5.E679. [DOI] [PubMed] [Google Scholar]
  12. DeFronzo R. A., Ferrannini E., Hendler R., Wahren J., Felig P. Influence of hyperinsulinemia, hyperglycemia, and the route of glucose administration on splanchnic glucose exchange. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5173–5177. doi: 10.1073/pnas.75.10.5173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ferrannini E., Bjorkman O., Reichard G. A., Jr, Pilo A., Olsson M., Wahren J., DeFronzo R. A. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes. 1985 Jun;34(6):580–588. doi: 10.2337/diab.34.6.580. [DOI] [PubMed] [Google Scholar]
  14. Finegood D. T., Bergman R. N., Vranic M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates. Diabetes. 1987 Aug;36(8):914–924. doi: 10.2337/diab.36.8.914. [DOI] [PubMed] [Google Scholar]
  15. Gardemann A., Strulik H., Jungermann K. A portal-arterial glucose concentration gradient as a signal for an insulin-dependent net glucose uptake in perfused rat liver. FEBS Lett. 1986 Jul 7;202(2):255–259. doi: 10.1016/0014-5793(86)80697-4. [DOI] [PubMed] [Google Scholar]
  16. Goresky C. A., Bach G. G., Nadeau B. E. Red cell carriage of label: its limiting effect on the exchange of materials in the liver. Circ Res. 1975 Feb;36(2):328–351. doi: 10.1161/01.res.36.2.328. [DOI] [PubMed] [Google Scholar]
  17. Hartley C. J., Cole J. S. An ultrasonic pulsed Doppler system for measuring blood flow in small vessels. J Appl Physiol. 1974 Oct;37(4):626–629. doi: 10.1152/jappl.1974.37.4.626. [DOI] [PubMed] [Google Scholar]
  18. Hendrick G. K., Frizzell R. T., Williams P. E., Cherrington A. D. Effect of hyperglucagonemia on hepatic glycogenolysis and gluconeogenesis after a prolonged fast. Am J Physiol. 1990 May;258(5 Pt 1):E841–E849. doi: 10.1152/ajpendo.1990.258.5.E841. [DOI] [PubMed] [Google Scholar]
  19. Insel P. A., Liljenquist J. E., Tobin J. D., Sherwin R. S., Watkins P., Andres R., Berman M. Insulin control of glucose metabolism in man: a new kinetic analysis. J Clin Invest. 1975 May;55(5):1057–1066. doi: 10.1172/JCI108006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ishida T., Chap Z., Chou J., Lewis R., Hartley C., Entman M., Field J. B. Differential effects of oral, peripheral intravenous, and intraportal glucose on hepatic glucose uptake and insulin and glucagon extraction in conscious dogs. J Clin Invest. 1983 Aug;72(2):590–601. doi: 10.1172/JCI111007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Katz J., McGarry J. D. The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest. 1984 Dec;74(6):1901–1909. doi: 10.1172/JCI111610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kelley D., Mitrakou A., Marsh H., Schwenk F., Benn J., Sonnenberg G., Arcangeli M., Aoki T., Sorensen J., Berger M. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest. 1988 May;81(5):1563–1571. doi: 10.1172/JCI113489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LEEVY C. M., MENDENHALL C. L., LESKO W., HOWARD M. M. Estimation of hepatic blood flow with indocyanine green. J Clin Invest. 1962 May;41:1169–1179. doi: 10.1172/JCI104570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liljenquist J. E., Mueller G. L., Cherrington A. D., Perry J. M., Rabinowitz D. Hyperglycemia per se (insulin and glucagon withdrawn) can inhibit hepatic glucose production in man. J Clin Endocrinol Metab. 1979 Jan;48(1):171–175. doi: 10.1210/jcem-48-1-171. [DOI] [PubMed] [Google Scholar]
  25. Lloyd B., Burrin J., Smythe P., Alberti K. G. Enzymic fluorometric continuous-flow assays for blood glucose, lactate, pyruvate, alanine, glycerol, and 3-hydroxybutyrate. Clin Chem. 1978 Oct;24(10):1724–1729. [PubMed] [Google Scholar]
  26. Mitrakou A., Jones R., Okuda Y., Pena J., Nurjhan N., Field J. B., Gerich J. E. Pathway and carbon sources for hepatic glycogen repletion in dogs. Am J Physiol. 1991 Feb;260(2 Pt 1):E194–E202. doi: 10.1152/ajpendo.1991.260.2.E194. [DOI] [PubMed] [Google Scholar]
  27. Moore M. C., Cherrington A. D., Cline G., Pagliassotti M. J., Jones E. M., Neal D. W., Badet C., Shulman G. I. Sources of carbon for hepatic glycogen synthesis in the conscious dog. J Clin Invest. 1991 Aug;88(2):578–587. doi: 10.1172/JCI115342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moore M. C., Pagliassotti M. J., Swift L. L., Asher J., Murrell J., Neal D., Cherrington A. D. Disposition of a mixed meal by the conscious dog. Am J Physiol. 1994 Apr;266(4 Pt 1):E666–E675. doi: 10.1152/ajpendo.1994.266.4.E666. [DOI] [PubMed] [Google Scholar]
  29. Myers S. R., Biggers D. W., Neal D. W., Cherrington A. D. Intraportal glucose delivery enhances the effects of hepatic glucose load on net hepatic glucose uptake in vivo. J Clin Invest. 1991 Jul;88(1):158–167. doi: 10.1172/JCI115273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Myers S. R., McGuinness O. P., Neal D. W., Cherrington A. D. Intraportal glucose delivery alters the relationship between net hepatic glucose uptake and the insulin concentration. J Clin Invest. 1991 Mar;87(3):930–939. doi: 10.1172/JCI115100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Newgard C. B., Hirsch L. J., Foster D. W., McGarry J. D. Studies on the mechanism by which exogenous glucose is converted into liver glycogen in the rat. A direct or an indirect pathway? J Biol Chem. 1983 Jul 10;258(13):8046–8052. [PubMed] [Google Scholar]
  32. Nuttall F. Q., Gannon M. C. An improved assay for hepatic glycogen synthase in liver extracts with emphasis on synthase R. Anal Biochem. 1989 May 1;178(2):311–319. doi: 10.1016/0003-2697(89)90644-1. [DOI] [PubMed] [Google Scholar]
  33. Pagliassotti M. J., Cherrington A. D. Regulation of net hepatic glucose uptake in vivo. Annu Rev Physiol. 1992;54:847–860. doi: 10.1146/annurev.ph.54.030192.004215. [DOI] [PubMed] [Google Scholar]
  34. Pagliassotti M. J., Myers S. R., Moore M. C., Neal D. W., Cherrington A. D. Magnitude of negative arterial-portal glucose gradient alters net hepatic glucose balance in conscious dogs. Diabetes. 1991 Dec;40(12):1659–1668. doi: 10.2337/diab.40.12.1659. [DOI] [PubMed] [Google Scholar]
  35. Radziuk J. Tracer methods and the metabolic disposal of a carbohydrate load in man. Diabetes Metab Rev. 1987 Jan;3(1):231–267. doi: 10.1002/dmr.5610030111. [DOI] [PubMed] [Google Scholar]
  36. Saccà L., Cicala M., Trimarco B., Ungaro B., Vigorito C. Differential effects of insulin on splanchnic and peripheral glucose disposal after an intravenous glucose load in man. J Clin Invest. 1982 Jul;70(1):117–126. doi: 10.1172/JCI110583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shalwitz R. A., Reo N. V., Becker N. N., Hill A. C., Ewy C. S., Ackerman J. J. Hepatic glycogen synthesis from duodenal glucose and alanine. An in situ 13C NMR study. J Biol Chem. 1989 Mar 5;264(7):3930–3934. [PubMed] [Google Scholar]
  38. Shulman G. I., Cline G., Schumann W. C., Chandramouli V., Kumaran K., Landau B. R. Quantitative comparison of pathways of hepatic glycogen repletion in fed and fasted humans. Am J Physiol. 1990 Sep;259(3 Pt 1):E335–E341. doi: 10.1152/ajpendo.1990.259.3.E335. [DOI] [PubMed] [Google Scholar]
  39. Shulman G. I., Rossetti L., Rothman D. L., Blair J. B., Smith D. Quantitative analysis of glycogen repletion by nuclear magnetic resonance spectroscopy in the conscious rat. J Clin Invest. 1987 Aug;80(2):387–393. doi: 10.1172/JCI113084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Youn J. H., Bergman R. N. Enhancement of hepatic glycogen by gluconeogenic precursors: substrate flux or metabolic control? Am J Physiol. 1990 Jun;258(6 Pt 1):E899–E906. doi: 10.1152/ajpendo.1990.258.6.E899. [DOI] [PubMed] [Google Scholar]
  41. van de Werve G., Jeanrenaud B. Liver glycogen metabolism: an overview. Diabetes Metab Rev. 1987 Jan;3(1):47–78. doi: 10.1002/dmr.5610030104. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES