Abstract
Tryptophan (TRP) is the precursor of melatonin, the primary secretory product of the pineal gland. Hepatic heme deficiency decreases the activity of liver tryptophan pyrrolase, leading to increased plasma TRP and serotonin. As a paradox, patients with attacks of acute intermittent porphyria (AIP), exhibit low nocturnal plasma melatonin levels. This study using a rat experimental model was designed to produce a pattern of TRP and melatonin production similar to that in AIP patients. Pineal melatonin production was measured in response to: (a) a heme synthesis inhibitor, succinylacetone, (b) a heme precursor, delta-aminolevulinic acid (Ala), (c) a structural analogue of Ala, gamma-aminobutyric acid. Studies were performed in intact rats, perifused pineal glands, and pinealocyte cultures. Ala, succinylacetone, and gamma-aminobutyric acid significantly decreased plasma melatonin levels independently of blood TRP concentration. In the pineal gland, the key enzyme activities of melatonin synthesis were unchanged for hydroxyindole-O-methyltransferase and decreased for N-acetyltransferase. Our results strongly suggest that Ala overproduced by the liver acts by mimicking the effect of gamma-aminobutyric acid on pineal melatonin in AIP. They also support the view that Ala acts as a toxic element in the pathophysiology of AIP.
Full Text
The Full Text of this article is available as a PDF (241.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AXELROD J., WEISSBACH H. Purification and properties of hydroxyindole-O-methyl transferase. J Biol Chem. 1961 Jan;236:211–213. [PubMed] [Google Scholar]
- Badawy A. A. Central role of tryptophan pyrrolase in haem metabolism. Biochem Soc Trans. 1979 Jun;7(3):575–583. doi: 10.1042/bst0070575. [DOI] [PubMed] [Google Scholar]
- Badawy A. A., Morgan C. J., Davis N. R. Effects of the haem precursor 5-aminolaevulinate on tryptophan metabolism and disposition in the rat. Biochem J. 1987 Nov 15;248(1):293–295. doi: 10.1042/bj2480293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Badawy A. A., Welch A. N., Morgan C. J. Tryptophan pyrrolase in haem regulation. The mechanism of the opposite effects of tryptophan on rat liver 5-aminolaevulinate synthase activity and the haem saturation of tryptophan pyrrolase. Biochem J. 1981 Aug 15;198(2):309–314. doi: 10.1042/bj1980309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaumont C., Deybach J. C., Grandchamp B., da Silva V., de Verneuil H., Nordmann Y. Effects of succinylacetone on dimethylsulfoxide-mediated induction of heme pathway enzymes in mouse friend virus-transformed erythroleukemia cells. Exp Cell Res. 1984 Oct;154(2):474–484. doi: 10.1016/0014-4827(84)90171-x. [DOI] [PubMed] [Google Scholar]
- Becker D. M., Cayanis E., Kramer S. The effect of delta-aminolevulinic acid on the synthesis and metabolism of GABA in rabbit brain homogenates. S Afr Med J. 1980 Mar 22;57(12):458–460. [PubMed] [Google Scholar]
- Bonkovsky H. L., Healey J. F., Lourie A. N., Gerron G. G. Intravenous heme-albumin in acute intermittent porphyria: evidence for repletion of hepatic hemoproteins and regulatory heme pools. Am J Gastroenterol. 1991 Aug;86(8):1050–1056. [PubMed] [Google Scholar]
- Brennan M. J., Cantrill R. C. Delta-aminolaevulinic acid is a potent agonist for GABA autoreceptors. Nature. 1979 Aug 9;280(5722):514–515. doi: 10.1038/280514a0. [DOI] [PubMed] [Google Scholar]
- Buda M., Klein D. C. A suspension culture of pinealocytes: regulation of N-acetyltransferase activity. Endocrinology. 1978 Oct;103(4):1483–1493. doi: 10.1210/endo-103-4-1483. [DOI] [PubMed] [Google Scholar]
- Champney T. H., Holtorf A. P., Steger R. W., Reiter R. J. Concurrent determination of enzymatic activities and substrate concentrations in the melatonin synthetic pathway within the same rat pineal gland. J Neurosci Res. 1984;11(1):59–66. doi: 10.1002/jnr.490110107. [DOI] [PubMed] [Google Scholar]
- Correia M. A., Lunetta J. M. Acute hepatic heme depletion: impaired gluconeogenesis in rats. Semin Hematol. 1989 Apr;26(2):120–127. [PubMed] [Google Scholar]
- Cutler M. G., Turner J. M., Moore M. R. A comparative study of the effects of delta-aminolaevulinic acid and the GABAA agonist, muscimol, in rat jejunal preparations. Pharmacol Toxicol. 1991 Jul;69(1):52–55. doi: 10.1111/j.1600-0773.1991.tb00409.x. [DOI] [PubMed] [Google Scholar]
- Daya S., Nonaka K. O., Buzzell G. R., Reiter R. J. Heme precursor 5-aminolevulinic acid alters brain tryptophan and serotonin levels without changing pineal serotonin and melatonin concentrations. J Neurosci Res. 1989 Jul;23(3):304–309. doi: 10.1002/jnr.490230309. [DOI] [PubMed] [Google Scholar]
- Foldes A., Maxwell C. A., Rintoul A. J., Edols R. W. Sheep pineal beta-adrenoceptor function--interaction with gamma-aminobutyric acid. Neuroendocrinology. 1984 Mar;38(3):206–211. doi: 10.1159/000123892. [DOI] [PubMed] [Google Scholar]
- Fraser S., Cowen P., Franklin M., Franey C., Arendt J. Direct radioimmunoassay for melatonin in plasma. Clin Chem. 1983 Feb;29(2):396–397. [PubMed] [Google Scholar]
- Helson L., Braverman S., Mangiardi J. delta-Aminolevulinic acid effects on neuronal and glial tumor cell lines. Neurochem Res. 1993 Dec;18(12):1255–1258. doi: 10.1007/BF00975044. [DOI] [PubMed] [Google Scholar]
- Klein D. C., Sugden D., Weller J. L. Postsynaptic alpha-adrenergic receptors potentiate the beta-adrenergic stimulation of pineal serotonin N-acetyltransferase. Proc Natl Acad Sci U S A. 1983 Jan;80(2):599–603. doi: 10.1073/pnas.80.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein D. C., Weller J. L., Moore R. Y. Melatonin metabolism: neural regulation of pineal serotonin: acetyl coenzyme A N-acetyltransferase activity. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3107–3110. doi: 10.1073/pnas.68.12.3107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Litman D. A., Correia M. A. L-tryptophan: a common denominator of biochemical and neurological events of acute hepatic porphyria? Science. 1983 Dec 2;222(4627):1031–1033. doi: 10.1126/science.6648517. [DOI] [PubMed] [Google Scholar]
- Moore M. R. Biochemistry of porphyria. Int J Biochem. 1993 Oct;25(10):1353–1368. doi: 10.1016/0020-711x(93)90683-6. [DOI] [PubMed] [Google Scholar]
- Nicoll R. A. The interaction of porphyrin precursors with GABA receptors in the isolated frog spinal cord. Life Sci. 1976 Aug 15;19(4):521–525. doi: 10.1016/0024-3205(76)90231-9. [DOI] [PubMed] [Google Scholar]
- Puy H., Deybach J. C., Baudry P., Callebert J., Touitou Y., Nordmann Y. Decreased nocturnal plasma melatonin levels in patients with recurrent acute intermittent porphyria attacks. Life Sci. 1993;53(8):621–627. doi: 10.1016/0024-3205(93)90271-4. [DOI] [PubMed] [Google Scholar]
- Ravault J. P., Arendt J., Tobler I., Chesneau D., Maulin O. Entrainment of melatonin rhythms in rams by symmetrical light-dark cycles of different period length. Chronobiol Int. 1989;6(4):329–339. doi: 10.3109/07420528909056939. [DOI] [PubMed] [Google Scholar]
- Redman J., Armstrong S., Ng K. T. Free-running activity rhythms in the rat: entrainment by melatonin. Science. 1983 Mar 4;219(4588):1089–1091. doi: 10.1126/science.6823571. [DOI] [PubMed] [Google Scholar]
- Reiter R. J. The pineal and its hormones in the control of reproduction in mammals. Endocr Rev. 1980 Spring;1(2):109–131. doi: 10.1210/edrv-1-2-109. [DOI] [PubMed] [Google Scholar]
- Rosenstein R. E., Chuluyan H. E., Cardinali D. P. Presynaptic effects of gamma-aminobutyric acid on norepinephrine release and uptake in rat pineal gland. J Neural Transm Gen Sect. 1990;82(2):131–140. doi: 10.1007/BF01245169. [DOI] [PubMed] [Google Scholar]
- Rosenstein R. E., Chuluyan H. E., Pereyra E. N., Cardinali D. P. Release and effect of gamma-aminobutyric acid (GABA) on rat pineal melatonin production in vitro. Cell Mol Neurobiol. 1989 Jun;9(2):207–219. doi: 10.1007/BF00713029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell V. A., Lamm M. C., Taljaard J. J. Effects of delta-aminolaevulinic acid, porphobilinogen and structurally related amino acids on 2-deoxy-glucose uptake in cultured neurons. Neurochem Res. 1982 Aug;7(8):1009–1022. doi: 10.1007/BF00965140. [DOI] [PubMed] [Google Scholar]
- Russell V. A., Lamm M. C., Taljaard J. J. Inhibition of Na+, K+-ATPase activity by delta-aminolevulinic acid. Neurochem Res. 1983 Nov;8(11):1407–1415. doi: 10.1007/BF00964997. [DOI] [PubMed] [Google Scholar]
- Tomokuni K., Ichiba M., Hirai Y. HPLC micro-method for determining delta-aminolevulinic acid in plasma. Clin Chem. 1993 Jan;39(1):169–170. [PubMed] [Google Scholar]
- Tschudy D. P., Hess R. A., Frykholm B. C. Inhibition of delta-aminolevulinic acid dehydrase by 4,6-dioxoheptanoic acid. J Biol Chem. 1981 Oct 10;256(19):9915–9923. [PubMed] [Google Scholar]
- Zhao Z. Y., Touitou Y. Kinetic changes of melatonin release in rat pineal perifusions at different circadian stages. Effects of corticosteroids. Acta Endocrinol (Copenh) 1993 Jul;129(1):81–88. doi: 10.1530/acta.0.1290081. [DOI] [PubMed] [Google Scholar]
- Zhao Z. Y., Touitou Y. Pineal perfusion with calcium channel blockers inhibits differently daytime and nighttime melatonin production in rat. Mol Cell Endocrinol. 1994 May;101(1-2):189–196. doi: 10.1016/0303-7207(94)90234-8. [DOI] [PubMed] [Google Scholar]