Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):120–125. doi: 10.1172/JCI118378

Role of angiotensin II in dietary modulation of rat late distal tubule bicarbonate flux in vivo.

D Z Levine 1, M Iacovitti 1, S Buckman 1, K D Burns 1
PMCID: PMC507069  PMID: 8550822

Abstract

We have reported that overnight fasting stimulates bicarbonate reabsorption (JtCo2) in rat distal tubules. The present in vivo microperfusion studies evaluated the hypothesis that endogenous angiotensin II (AII) mediates this response. Rat late distal (LD) tubules were perfused at 8 nl/min in vivo with a hypotonic solution containing 28 mM bicarbonate. In overnight-fasted rats, LD JtCO2 was significantly higher than in normally fed rats (50 +/- 4 vs. 16 +/- 6 pmol/min.mm, P < 0.05). When overnight-fasted rats were salt-loaded, JtCO2 fell significantly (38 +/- 3 pmol/min.mm, P < 0.05). Conversely, in fed rats ingesting a zero-salt diet, JtCO2 increased three-fold (45 +/- 5 pmol/min.mm, P < 0.05). Enalaprilat infusion (0.25 micrograms/kg body wt, intravenously), in these zero-salt and overnight-fasted rats, reduced LD JtCO2 values to normal. Further, infusion of losartan (5 mg/kg body wt, intravenously), the specific AII AT1 receptor blocker, reduced JtCO2 in overnight-fasted rats by two-thirds (16 +/- 4 pmol/min.mm, P < 0.05). Finally, we perfused 10(-11) M AII intraluminally with and without 10(-6) M losartan: AII increased JtCO2 to 45 +/- 6 pmol/min.mm, equal to the zero-salt flux. This was completely abrogated by simultaneous losartan perfusion. Therefore, these results suggest that AII is an in vivo stimulator of late distal tubule bicarbonate reabsorption.

Full Text

The Full Text of this article is available as a PDF (166.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng H. F., Becker B. N., Burns K. D., Harris R. C. Angiotensin II upregulates type-1 angiotensin II receptors in renal proximal tubule. J Clin Invest. 1995 May;95(5):2012–2019. doi: 10.1172/JCI117886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fejes-Tóth G., Náray-Fejes-Tóth A. Isolated principal and intercalated cells: hormone responsiveness and Na+-K+-ATPase activity. Am J Physiol. 1989 Apr;256(4 Pt 2):F742–F750. doi: 10.1152/ajprenal.1989.256.4.F742. [DOI] [PubMed] [Google Scholar]
  3. Fernandez R., Lopes M. J., de Lira R. F., Dantas W. F., Cragoe Júnior E. J., Malnic G. Mechanism of acidification along cortical distal tubule of the rat. Am J Physiol. 1994 Feb;266(2 Pt 2):F218–F226. doi: 10.1152/ajprenal.1994.266.2.F218. [DOI] [PubMed] [Google Scholar]
  4. Levine D. Z. An in vivo microperfusion study of distal tubule bicarbonate reabsorption in normal and ammonium chloride rats. J Clin Invest. 1985 Feb;75(2):588–595. doi: 10.1172/JCI111735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Levine D. Z., Iacovitti M., Buckman S., Harrison V. In vivo modulation of rat distal tubule net HCO3 flux by VIP, isoproterenol, angiotensin II, and ADH. Am J Physiol. 1994 Jun;266(6 Pt 2):F878–F883. doi: 10.1152/ajprenal.1994.266.6.F878. [DOI] [PubMed] [Google Scholar]
  6. Levine D. Z., Iacovitti M., Nash L., Vandorpe D. Secretion of bicarbonate by rat distal tubules in vivo. Modulation by overnight fasting. J Clin Invest. 1988 Jun;81(6):1873–1878. doi: 10.1172/JCI113533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Levine D. Z. Single-nephron studies: implications for acid-base regulation. Kidney Int. 1990 Oct;38(4):744–761. doi: 10.1038/ki.1990.267. [DOI] [PubMed] [Google Scholar]
  8. Liu F. Y., Cogan M. G. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. J Clin Invest. 1988 Aug;82(2):601–607. doi: 10.1172/JCI113638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Liu F. Y., Cogan M. G. Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J Clin Invest. 1987 Jul;80(1):272–275. doi: 10.1172/JCI113059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mujais S. K., Kauffman S., Katz A. I. Angiotensin II binding sites in individual segments of the rat nephron. J Clin Invest. 1986 Jan;77(1):315–318. doi: 10.1172/JCI112293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Navar L. G., Lewis L., Hymel A., Braam B., Mitchell K. D. Tubular fluid concentrations and kidney contents of angiotensins I and II in anesthetized rats. J Am Soc Nephrol. 1994 Oct;5(4):1153–1158. doi: 10.1681/ASN.V541153. [DOI] [PubMed] [Google Scholar]
  12. Nocenti M. R., Simchon S., Cizek L. J. Analysis of the renin-angiotensin system during fasting in adult male rabbits. Proc Soc Exp Biol Med. 1975 Oct;150(1):142–147. doi: 10.3181/00379727-150-38991. [DOI] [PubMed] [Google Scholar]
  13. Peterson D. R., Chrabaszcz G., Peterson W. R., Oparil S. Mechanism for renal tubular handling of angiotensin. Am J Physiol. 1979 Apr;236(4):F365–F372. doi: 10.1152/ajprenal.1979.236.4.F365. [DOI] [PubMed] [Google Scholar]
  14. Schelling J. R., Singh H., Marzec R., Linas S. L. Angiotensin II-dependent proximal tubule sodium transport is mediated by cAMP modulation of phospholipase C. Am J Physiol. 1994 Nov;267(5 Pt 1):C1239–C1245. doi: 10.1152/ajpcell.1994.267.5.C1239. [DOI] [PubMed] [Google Scholar]
  15. Schuster V. L. Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules. J Clin Invest. 1985 Jun;75(6):2056–2064. doi: 10.1172/JCI111925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schuster V. L. Function and regulation of collecting duct intercalated cells. Annu Rev Physiol. 1993;55:267–288. doi: 10.1146/annurev.ph.55.030193.001411. [DOI] [PubMed] [Google Scholar]
  17. Seikaly M. G., Arant B. S., Jr, Seney F. D., Jr Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest. 1990 Oct;86(4):1352–1357. doi: 10.1172/JCI114846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Terada Y., Tomita K., Nonoguchi H., Marumo F. PCR localization of angiotensin II receptor and angiotensinogen mRNAs in rat kidney. Kidney Int. 1993 Jun;43(6):1251–1259. doi: 10.1038/ki.1993.177. [DOI] [PubMed] [Google Scholar]
  19. Tofovic S. P., Pong A. S., Jackson E. K. Effects of angiotensin subtype 1 and subtype 2 receptor antagonists in normotensive versus hypertensive rats. Hypertension. 1991 Dec;18(6):774–782. doi: 10.1161/01.hyp.18.6.774. [DOI] [PubMed] [Google Scholar]
  20. Tojo A., Tisher C. C., Madsen K. M. Angiotensin II regulates H(+)-ATPase activity in rat cortical collecting duct. Am J Physiol. 1994 Dec;267(6 Pt 2):F1045–F1051. doi: 10.1152/ajprenal.1994.267.6.F1045. [DOI] [PubMed] [Google Scholar]
  21. Vos P. F., Boer P., Braam B., Koomans H. A. The origin of urinary angiotensins in humans. J Am Soc Nephrol. 1994 Aug;5(2):215–223. doi: 10.1681/ASN.V52215. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES