Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):126–132. doi: 10.1172/JCI118379

Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects.

R Taylor 1, I Magnusson 1, D L Rothman 1, G W Cline 1, A Caumo 1, C Cobelli 1, G I Shulman 1
PMCID: PMC507070  PMID: 8550823

Abstract

Despite extensive recent studies, understanding of the normal postprandial processes underlying immediate storage of substrate and maintenance of glucose homeostasis in humans after a mixed meal has been incomplete. The present study applied 13C nuclear magnetic resonance spectroscopy to measure sequential changes in hepatic glycogen concentration, a novel tracer approach to measure postprandial suppression of hepatic glucose output, and acetaminophen to trace the pathways of hepatic glycogen synthesis to elucidate the homeostatic adaptation to the fed state in healthy human subjects. After the liquid mixed meal, liver glycogen concentration rose from 207 +/- 22 to 316 +/- 19 mmol/liter at an average rate of 0.34 mmol/liter per min and peaked at 318 +/- 31 min, falling rapidly thereafter (0.26 mmol/liter per min). The mean increment at peak represented net glycogen synthesis of 28.3 +/- 3.7 g (approximately 19% of meal carbohydrate content). The contribution of the direct pathway to overall glycogen synthesis was 46 +/- 5 and 68 +/- 8% between 2 and 4 and 4 and 6 h, respectively. Hepatic glucose output was completely suppressed within 30 min of the meal. It increased steadily from 60 to 255 min from 0.31 +/- 32 to 0.49 +/- 18 mg/kg per min then rapidly returned towards basal levels (1.90 +/- 0.04 mg/kg per min). This pattern of change mirrored precisely the plasma glucagon/insulin ratio. These data provide for the first time a comprehensive picture of normal carbohydrate metabolism in humans after ingestion of a mixed meal.

Full Text

The Full Text of this article is available as a PDF (184.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkins B. A., Myers S. R., Hendrick G. K., Stevenson R. W., Williams P. E., Cherrington A. D. Importance of the route of intravenous glucose delivery to hepatic glucose balance in the conscious dog. J Clin Invest. 1987 Feb;79(2):557–565. doi: 10.1172/JCI112847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agius L., Peak M., Alberti K. G. Regulation of glycogen synthesis from glucose and gluconeogenic precursors by insulin in periportal and perivenous rat hepatocytes. Biochem J. 1990 Feb 15;266(1):91–102. doi: 10.1042/bj2660091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Agius L., Tosh D., Peak M. The contribution of pyruvate cycling to loss of [6-3H]glucose during conversion of glucose to glycogen in hepatocytes: effects of insulin, glucose and acinar origin of hepatocytes. Biochem J. 1993 Jan 1;289(Pt 1):255–262. doi: 10.1042/bj2890255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alzaid A. A., Dinneen S. F., Turk D. J., Caumo A., Cobelli C., Rizza R. A. Assessment of insulin action and glucose effectiveness in diabetic and nondiabetic humans. J Clin Invest. 1994 Dec;94(6):2341–2348. doi: 10.1172/JCI117599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bogardus C., Lillioja S., Stone K., Mott D. Correlation between muscle glycogen synthase activity and in vivo insulin action in man. J Clin Invest. 1984 Apr;73(4):1185–1190. doi: 10.1172/JCI111304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cobelli C., Mari A., Ferrannini E. Non-steady state: error analysis of Steele's model and developments for glucose kinetics. Am J Physiol. 1987 May;252(5 Pt 1):E679–E689. doi: 10.1152/ajpendo.1987.252.5.E679. [DOI] [PubMed] [Google Scholar]
  7. Cobelli C., Toffolo G. Constant specific activity input allows reconstruction of endogenous glucose concentration in non-steady state. Am J Physiol. 1990 Jun;258(6 Pt 1):E1037–E1040. doi: 10.1152/ajpendo.1990.258.6.E1037. [DOI] [PubMed] [Google Scholar]
  8. Cobelli C., Toffolo G., Foster D. M. Tracer-to-tracee ratio for analysis of stable isotope tracer data: link with radioactive kinetic formalism. Am J Physiol. 1992 Jun;262(6 Pt 1):E968–E975. doi: 10.1152/ajpendo.1992.262.6.E968. [DOI] [PubMed] [Google Scholar]
  9. Collins P. J., Horowitz M., Chatterton B. E. Proximal, distal and total stomach emptying of a digestible solid meal in normal subjects. Br J Radiol. 1988 Jan;61(721):12–18. doi: 10.1259/0007-1285-61-721-12. [DOI] [PubMed] [Google Scholar]
  10. Cooper B. G., McLean J. A., Taylor R. An evaluation of the Deltatrac indirect calorimeter by gravimetric injection and alcohol burning. Clin Phys Physiol Meas. 1991 Nov;12(4):333–341. doi: 10.1088/0143-0815/12/4/003. [DOI] [PubMed] [Google Scholar]
  11. DeFronzo R. A., Simonson D., Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982 Oct;23(4):313–319. doi: 10.1007/BF00253736. [DOI] [PubMed] [Google Scholar]
  12. Elia M., Folmer P., Schlatmann A., Goren A., Austin S. Carbohydrate, fat, and protein metabolism in muscle and in the whole body after mixed meal ingestion. Metabolism. 1988 Jun;37(6):542–551. doi: 10.1016/0026-0495(88)90169-2. [DOI] [PubMed] [Google Scholar]
  13. Ferrannini E., Bjorkman O., Reichard G. A., Jr, Pilo A., Olsson M., Wahren J., DeFronzo R. A. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes. 1985 Jun;34(6):580–588. doi: 10.2337/diab.34.6.580. [DOI] [PubMed] [Google Scholar]
  14. Finegood D. T., Bergman R. N. Optimal segments: a method for smoothing tracer data to calculate metabolic fluxes. Am J Physiol. 1983 May;244(5):E472–E479. doi: 10.1152/ajpendo.1983.244.5.E472. [DOI] [PubMed] [Google Scholar]
  15. Finegood D. T., Bergman R. N., Vranic M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates. Diabetes. 1987 Aug;36(8):914–924. doi: 10.2337/diab.36.8.914. [DOI] [PubMed] [Google Scholar]
  16. Friedman J. E., Caro J. F., Pories W. J., Azevedo J. L., Jr, Dohm G. L. Glucose metabolism in incubated human muscle: effect of obesity and non-insulin-dependent diabetes mellitus. Metabolism. 1994 Aug;43(8):1047–1054. doi: 10.1016/0026-0495(94)90188-0. [DOI] [PubMed] [Google Scholar]
  17. Gruetter R., Magnusson I., Rothman D. L., Avison M. J., Shulman R. G., Shulman G. I. Validation of 13C NMR measurements of liver glycogen in vivo. Magn Reson Med. 1994 Jun;31(6):583–588. doi: 10.1002/mrm.1910310602. [DOI] [PubMed] [Google Scholar]
  18. Hollenbeck C. B., Chen Y. D., Reaven G. M. A comparison of the relative effects of obesity and non-insulin-dependent diabetes mellitus on in vivo insulin-stimulated glucose utilization. Diabetes. 1984 Jul;33(7):622–626. doi: 10.2337/diab.33.7.622. [DOI] [PubMed] [Google Scholar]
  19. Hwang J. H., Perseghin G., Rothman D. L., Cline G. W., Magnusson I., Petersen K. F., Shulman G. I. Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J Clin Invest. 1995 Feb;95(2):783–787. doi: 10.1172/JCI117727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ishida T., Chap Z., Chou J., Lewis R., Hartley C., Entman M., Field J. B. Differential effects of oral, peripheral intravenous, and intraportal glucose on hepatic glucose uptake and insulin and glucagon extraction in conscious dogs. J Clin Invest. 1983 Aug;72(2):590–601. doi: 10.1172/JCI111007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jackson R. A., Hamling J. B., Sim B. M., Hawa M. I., Blix P. M., Nabarro J. D. Peripheral lactate and oxygen metabolism in man: the influence of oral glucose loading. Metabolism. 1987 Feb;36(2):144–150. doi: 10.1016/0026-0495(87)90008-4. [DOI] [PubMed] [Google Scholar]
  22. Jackson R. A., Roshania R. D., Hawa M. I., Sim B. M., DiSilvio L. Impact of glucose ingestion on hepatic and peripheral glucose metabolism in man: an analysis based on simultaneous use of the forearm and double isotope techniques. J Clin Endocrinol Metab. 1986 Sep;63(3):541–549. doi: 10.1210/jcem-63-3-541. [DOI] [PubMed] [Google Scholar]
  23. Jacquez J. A. Theory of production rate calculations in steady and non-steady states and its application to glucose metabolism. Am J Physiol. 1992 Jun;262(6 Pt 1):E779–E790. doi: 10.1152/ajpendo.1992.262.6.E779. [DOI] [PubMed] [Google Scholar]
  24. Jones I. R., Owens D. R., Luzio S., Williams S., Hayes T. M. The glucose dependent insulinotropic polypeptide response to oral glucose and mixed meals is increased in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1989 Sep;32(9):668–677. doi: 10.1007/BF00274255. [DOI] [PubMed] [Google Scholar]
  25. Katz J., Golden S., Wals P. A. Glycogen synthesis by rat hepatocytes. Biochem J. 1979 May 15;180(2):389–402. doi: 10.1042/bj1800389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Katz J., McGarry J. D. The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest. 1984 Dec;74(6):1901–1909. doi: 10.1172/JCI111610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Katz L. D., Glickman M. G., Rapoport S., Ferrannini E., DeFronzo R. A. Splanchnic and peripheral disposal of oral glucose in man. Diabetes. 1983 Jul;32(7):675–679. doi: 10.2337/diab.32.7.675. [DOI] [PubMed] [Google Scholar]
  28. Kelley D., Mitrakou A., Marsh H., Schwenk F., Benn J., Sonnenberg G., Arcangeli M., Aoki T., Sorensen J., Berger M. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Invest. 1988 May;81(5):1563–1571. doi: 10.1172/JCI113489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Magnusson I., Chandramouli V., Schumann W. C., Kumaran K., Wahren J., Landau B. R. Pathways of hepatic glycogen formation in humans following ingestion of a glucose load in the fed state. Metabolism. 1989 Jun;38(6):583–585. doi: 10.1016/0026-0495(89)90221-7. [DOI] [PubMed] [Google Scholar]
  30. Magnusson I., Rothman D. L., Jucker B., Cline G. W., Shulman R. G., Shulman G. I. Liver glycogen turnover in fed and fasted humans. Am J Physiol. 1994 May;266(5 Pt 1):E796–E803. doi: 10.1152/ajpendo.1994.266.5.E796. [DOI] [PubMed] [Google Scholar]
  31. McMahon M., Marsh H., Rizza R. Comparison of the pattern of postprandial carbohydrate metabolism after ingestion of a glucose drink or a mixed meal. J Clin Endocrinol Metab. 1989 Mar;68(3):647–653. doi: 10.1210/jcem-68-3-647. [DOI] [PubMed] [Google Scholar]
  32. Mitrakou A., Kelley D., Veneman T., Jenssen T., Pangburn T., Reilly J., Gerich J. Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes. 1990 Nov;39(11):1381–1390. doi: 10.2337/diab.39.11.1381. [DOI] [PubMed] [Google Scholar]
  33. Myers S. R., Biggers D. W., Neal D. W., Cherrington A. D. Intraportal glucose delivery enhances the effects of hepatic glucose load on net hepatic glucose uptake in vivo. J Clin Invest. 1991 Jul;88(1):158–167. doi: 10.1172/JCI115273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Price T. B., Taylor R., Mason G. F., Rothman D. L., Shulman G. I., Shulman R. G. Turnover of human muscle glycogen with low-intensity exercise. Med Sci Sports Exerc. 1994 Aug;26(8):983–991. [PubMed] [Google Scholar]
  35. Radziuk J., Inculet R. The effects of ingested and intravenous glucose on forearm uptake of glucose and glucogenic substrate in normal man. Diabetes. 1983 Nov;32(11):977–981. doi: 10.2337/diab.32.11.977. [DOI] [PubMed] [Google Scholar]
  36. Radziuk J., Norwich K. H., Vranic M. Experimental validation of measurements of glucose turnover in nonsteady state. Am J Physiol. 1978 Jan;234(1):E84–E93. doi: 10.1152/ajpendo.1978.234.1.E84. [DOI] [PubMed] [Google Scholar]
  37. Rothman D. L., Magnusson I., Katz L. D., Shulman R. G., Shulman G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991 Oct 25;254(5031):573–576. doi: 10.1126/science.1948033. [DOI] [PubMed] [Google Scholar]
  38. Shulman G. I., Cline G., Schumann W. C., Chandramouli V., Kumaran K., Landau B. R. Quantitative comparison of pathways of hepatic glycogen repletion in fed and fasted humans. Am J Physiol. 1990 Sep;259(3 Pt 1):E335–E341. doi: 10.1152/ajpendo.1990.259.3.E335. [DOI] [PubMed] [Google Scholar]
  39. Taylor R., Price T. B., Katz L. D., Shulman R. G., Shulman G. I. Direct measurement of change in muscle glycogen concentration after a mixed meal in normal subjects. Am J Physiol. 1993 Aug;265(2 Pt 1):E224–E229. doi: 10.1152/ajpendo.1993.265.2.E224. [DOI] [PubMed] [Google Scholar]
  40. Tosh D., Beresford G., Agius L. Glycogen synthesis from glucose by direct and indirect pathways in hepatocyte cultures from different nutritional states. Biochim Biophys Acta. 1994 Nov 10;1224(2):205–212. doi: 10.1016/0167-4889(94)90192-9. [DOI] [PubMed] [Google Scholar]
  41. Waldhäusl W. K., Gasić S., Bratusch-Marrain P., Nowotny P. The 75-g oral glucose tolerance test: effect on splanchnic metabolism of substrates and pancreatic hormone release in healthy man. Diabetologia. 1983 Dec;25(6):489–495. doi: 10.1007/BF00284457. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES