Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):133–138. doi: 10.1172/JCI118380

Elimination of the action of glucagon-like peptide 1 causes an impairment of glucose tolerance after nutrient ingestion by healthy baboons.

D A D'Alessio 1, R Vogel 1, R Prigeon 1, E Laschansky 1, D Koerker 1, J Eng 1, J W Ensinck 1
PMCID: PMC507071  PMID: 8550824

Abstract

Glucagon-like peptide 1 (GLP-1) is an insulinotropic hormone released after nutrient ingestion which is known to augment insulin secretion, inhibit glucagon release, and promote insulin-independent glucose disposition. To determine the overall effect of GLP-1 on glucose disposition after a meal we studied a group of healthy, conscious baboons before and after intragastric glucose administration during infusions of saline, and two treatments to eliminate the action of GLP-1: (a) exendin-[9-39] (Ex-9), a peptide receptor antagonist of GLP-1; or (b) an anti-GLP-1 mAb. Fasting concentrations of glucose were higher during infusion of Ex-9 than during saline (4.44 +/- 0.05 vs. 4.16 +/- 0.05 mM, P < 0.01), coincident with an elevation in the levels of circulating glucagon (96 +/- 10 vs. 59 +/- 3 ng/liter, P < 0.02). The postprandial glycemic excursions during administration of Ex-9 and mAb were greater than during the control studies (Ex-9 13.7 +/- 2.0 vs. saline 10.0 +/- 0.8 mM, P = 0.07; and mAb 13.6 +/- 1.2 vs. saline 10.6 +/- 0.9 mM, P = 0.044). The increments in insulin levels throughout the absorption of the glucose meal were not different for the experimental and control conditions, but the insulin response in the first 30 min after the glucose meal was diminished significantly during treatment with Ex-9 (Ex-9 761 +/- 139 vs. saline 1,089 +/- 166 pM, P = 0.044) and was delayed in three of the four animals given the neutralizing antibody (mAb 946 +/- 262 vs. saline 1,146 +/- 340 pM). Thus, elimination of the action of GLP-1 impaired the disposition of an intragastric glucose meal and this was at least partly attributable to diminished early insulin release. In addition to these postprandial effects, the concurrent elevation in fasting glucose and glucagon during GLP-1 antagonism suggests that GLP-1 may have a tonic inhibitory effect on glucagon output. These findings demonstrate the important role of GLP-1 in the assimilation of glucose absorbed from the gut.

Full Text

The Full Text of this article is available as a PDF (165.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beard J. C., Bergman R. N., Ward W. K., Porte D., Jr The insulin sensitivity index in nondiabetic man. Correlation between clamp-derived and IVGTT-derived values. Diabetes. 1986 Mar;35(3):362–369. doi: 10.2337/diab.35.3.362. [DOI] [PubMed] [Google Scholar]
  2. Bergman R. N., Phillips L. S., Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest. 1981 Dec;68(6):1456–1467. doi: 10.1172/JCI110398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brelje T. C., Sorenson R. L. Nutrient and hormonal regulation of the threshold of glucose-stimulated insulin secretion in isolated rat pancreases. Endocrinology. 1988 Sep;123(3):1582–1590. doi: 10.1210/endo-123-3-1582. [DOI] [PubMed] [Google Scholar]
  4. Bruce D. G., Chisholm D. J., Storlien L. H., Kraegen E. W. Physiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes. Diabetes. 1988 Jun;37(6):736–744. doi: 10.2337/diab.37.6.736. [DOI] [PubMed] [Google Scholar]
  5. Calles-Escandon J., Robbins D. C. Loss of early phase of insulin release in humans impairs glucose tolerance and blunts thermic effect of glucose. Diabetes. 1987 Oct;36(10):1167–1172. doi: 10.2337/diab.36.10.1167. [DOI] [PubMed] [Google Scholar]
  6. Creutzfeldt W., Ebert R. New developments in the incretin concept. Diabetologia. 1985 Aug;28(8):565–573. doi: 10.1007/BF00281990. [DOI] [PubMed] [Google Scholar]
  7. D'Alessio D. A., Kahn S. E., Leusner C. R., Ensinck J. W. Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J Clin Invest. 1994 May;93(5):2263–2266. doi: 10.1172/JCI117225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deacon C. F., Johnsen A. H., Holst J. J. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab. 1995 Mar;80(3):952–957. doi: 10.1210/jcem.80.3.7883856. [DOI] [PubMed] [Google Scholar]
  9. Drucker D. J. Glucagon and the glucagon-like peptides. Pancreas. 1990 Jul;5(4):484–488. doi: 10.1097/00006676-199007000-00018. [DOI] [PubMed] [Google Scholar]
  10. Eberts T. J., Sample R. H., Glick M. R., Ellis G. H. A simplified, colorimetric micromethod for xylose in serum or urine, with phloroglucinol. Clin Chem. 1979 Aug;25(8):1440–1443. [PubMed] [Google Scholar]
  11. Egan J. M., Montrose-Rafizadeh C., Wang Y., Bernier M., Roth J. Glucagon-like peptide-1(7-36) amide (GLP-1) enhances insulin-stimulated glucose metabolism in 3T3-L1 adipocytes: one of several potential extrapancreatic sites of GLP-1 action. Endocrinology. 1994 Nov;135(5):2070–2075. doi: 10.1210/endo.135.5.7956929. [DOI] [PubMed] [Google Scholar]
  12. Elliott R. M., Morgan L. M., Tredger J. A., Deacon S., Wright J., Marks V. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol. 1993 Jul;138(1):159–166. doi: 10.1677/joe.0.1380159. [DOI] [PubMed] [Google Scholar]
  13. Ensinck J. W., Shepard C., Dudl R. J., Williams R. H. Use of benzamidine as a proteolytic inhibitor in the radioimmunoassay of glucagon in plasma. J Clin Endocrinol Metab. 1972 Sep;35(3):463–467. doi: 10.1210/jcem-35-3-463. [DOI] [PubMed] [Google Scholar]
  14. Gutniak M., Orskov C., Holst J. J., Ahrén B., Efendic S. Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med. 1992 May 14;326(20):1316–1322. doi: 10.1056/NEJM199205143262003. [DOI] [PubMed] [Google Scholar]
  15. Göke R., Fehmann H. C., Göke B. Glucagon-like peptide-1(7-36) amide is a new incretin/enterogastrone candidate. Eur J Clin Invest. 1991 Apr;21(2):135–144. doi: 10.1111/j.1365-2362.1991.tb01802.x. [DOI] [PubMed] [Google Scholar]
  16. Göke R., Fehmann H. C., Linn T., Schmidt H., Krause M., Eng J., Göke B. Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993 Sep 15;268(26):19650–19655. [PubMed] [Google Scholar]
  17. Holst J. J. Glucagonlike peptide 1: a newly discovered gastrointestinal hormone. Gastroenterology. 1994 Dec;107(6):1848–1855. doi: 10.1016/0016-5085(94)90831-1. [DOI] [PubMed] [Google Scholar]
  18. Holz G. G., 4th, Kühtreiber W. M., Habener J. F. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature. 1993 Jan 28;361(6410):362–365. doi: 10.1038/361362a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kolligs F., Fehmann H. C., Göke R., Göke B. Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39) amide. Diabetes. 1995 Jan;44(1):16–19. doi: 10.2337/diab.44.1.16. [DOI] [PubMed] [Google Scholar]
  20. Komatsu R., Matsuyama T., Namba M., Watanabe N., Itoh H., Kono N., Tarui S. Glucagonostatic and insulinotropic action of glucagonlike peptide I-(7-36)-amide. Diabetes. 1989 Jul;38(7):902–905. doi: 10.2337/diab.38.7.902. [DOI] [PubMed] [Google Scholar]
  21. Kreymann B., Williams G., Ghatei M. A., Bloom S. R. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987 Dec 5;2(8571):1300–1304. doi: 10.1016/s0140-6736(87)91194-9. [DOI] [PubMed] [Google Scholar]
  22. McIntyre N., Holdsworth C. D., Turner D. S. Intestinal factors in the control of insulin secretion. J Clin Endocrinol Metab. 1965 Oct;25(10):1317–1324. doi: 10.1210/jcem-25-10-1317. [DOI] [PubMed] [Google Scholar]
  23. Mentlein R., Gallwitz B., Schmidt W. E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem. 1993 Jun 15;214(3):829–835. doi: 10.1111/j.1432-1033.1993.tb17986.x. [DOI] [PubMed] [Google Scholar]
  24. Mojsov S., Weir G. C., Habener J. F. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987 Feb;79(2):616–619. doi: 10.1172/JCI112855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nagi D. K., Knowler W. C., Charles M. A., Liu Q. Z., Hanson R. L., McCance D. R., Pettitt D. J., Bennett P. H. Early and late insulin response as predictors of NIDDM in Pima Indians with impaired glucose tolerance. Diabetologia. 1995 Feb;38(2):187–192. doi: 10.1007/BF00400093. [DOI] [PubMed] [Google Scholar]
  26. Nathan D. M., Schreiber E., Fogel H., Mojsov S., Habener J. F. Insulinotropic action of glucagonlike peptide-I-(7-37) in diabetic and nondiabetic subjects. Diabetes Care. 1992 Feb;15(2):270–276. doi: 10.2337/diacare.15.2.270. [DOI] [PubMed] [Google Scholar]
  27. Nauck M. A., Heimesaat M. M., Orskov C., Holst J. J., Ebert R., Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993 Jan;91(1):301–307. doi: 10.1172/JCI116186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nauck M. A., Kleine N., Orskov C., Holst J. J., Willms B., Creutzfeldt W. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1993 Aug;36(8):741–744. doi: 10.1007/BF00401145. [DOI] [PubMed] [Google Scholar]
  29. Orskov C., Holst J. J. Radio-immunoassays for glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). Scand J Clin Lab Invest. 1987 Apr;47(2):165–174. [PubMed] [Google Scholar]
  30. Orskov C., Jeppesen J., Madsbad S., Holst J. J. Proglucagon products in plasma of noninsulin-dependent diabetics and nondiabetic controls in the fasting state and after oral glucose and intravenous arginine. J Clin Invest. 1991 Feb;87(2):415–423. doi: 10.1172/JCI115012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Orskov C., Rabenhøj L., Wettergren A., Kofod H., Holst J. J. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes. 1994 Apr;43(4):535–539. doi: 10.2337/diab.43.4.535. [DOI] [PubMed] [Google Scholar]
  32. Perley M. J., Kipnis D. M. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects. J Clin Invest. 1967 Dec;46(12):1954–1962. doi: 10.1172/JCI105685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Phillips D. I., Clark P. M., Hales C. N., Osmond C. Understanding oral glucose tolerance: comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion. Diabet Med. 1994 Apr;11(3):286–292. doi: 10.1111/j.1464-5491.1994.tb00273.x. [DOI] [PubMed] [Google Scholar]
  34. Raufman J. P., Singh L., Singh G., Eng J. Truncated glucagon-like peptide-1 interacts with exendin receptors on dispersed acini from guinea pig pancreas. Identification of a mammalian analogue of the reptilian peptide exendin-4. J Biol Chem. 1992 Oct 25;267(30):21432–21437. [PubMed] [Google Scholar]
  35. Reaven G. M., Chen Y. D., Golay A., Swislocki A. L., Jaspan J. B. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1987 Jan;64(1):106–110. doi: 10.1210/jcem-64-1-106. [DOI] [PubMed] [Google Scholar]
  36. Seltzer H. S., Allen E. W., Herron A. L., Jr, Brennan M. T. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest. 1967 Mar;46(3):323–335. doi: 10.1172/JCI105534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vaag A., Henriksen J. E., Madsbad S., Holm N., Beck-Nielsen H. Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for non-insulin-dependent diabetes mellitus. J Clin Invest. 1995 Feb;95(2):690–698. doi: 10.1172/JCI117715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Valverde I., Morales M., Clemente F., López-Delgado M. I., Delgado E., Perea A., Villanueva-Peñacarrillo M. L. Glucagon-like peptide 1: a potent glycogenic hormone. FEBS Lett. 1994 Aug 1;349(2):313–316. doi: 10.1016/0014-5793(94)00699-7. [DOI] [PubMed] [Google Scholar]
  39. Villanueva-Peñacarrillo M. L., Alcántara A. I., Clemente F., Delgado E., Valverde I. Potent glycogenic effect of GLP-1(7-36)amide in rat skeletal muscle. Diabetologia. 1994 Nov;37(11):1163–1166. doi: 10.1007/BF00418382. [DOI] [PubMed] [Google Scholar]
  40. Wang Z., Wang R. M., Owji A. A., Smith D. M., Ghatei M. A., Bloom S. R. Glucagon-like peptide-1 is a physiological incretin in rat. J Clin Invest. 1995 Jan;95(1):417–421. doi: 10.1172/JCI117671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wettergren A., Schjoldager B., Mortensen P. E., Myhre J., Christiansen J., Holst J. J. Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci. 1993 Apr;38(4):665–673. doi: 10.1007/BF01316798. [DOI] [PubMed] [Google Scholar]
  42. Wheeler M. B., Lu M., Dillon J. S., Leng X. H., Chen C., Boyd A. E., 3rd Functional expression of the rat glucagon-like peptide-I receptor, evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology. 1993 Jul;133(1):57–62. doi: 10.1210/endo.133.1.8391428. [DOI] [PubMed] [Google Scholar]
  43. Zaharko D. S., Beck L. V. Studies of a simplified plasma insulin immunoassaay using cellulose powder. Diabetes. 1968 Jul;17(7):444–459. doi: 10.2337/diab.17.7.444. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES