Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):162–171. doi: 10.1172/JCI118385

Involvement of wound-associated factors in rat brain astrocyte migratory response to axonal injury: in vitro simulation.

A Faber-Elman 1, A Solomon 1, J A Abraham 1, M Marikovsky 1, M Schwartz 1
PMCID: PMC507075  PMID: 8550829

Abstract

The poor ability of mammalian central nervous system (CNS) axons to regenerate has been attributed, in part, to astrocyte behavior after axonal injury. This behavior is manifested by the limited ability of astrocytes to migrate and thus repopulate the injury site. Here, the migratory behavior of astrocytes in response to injury of CNS axons in vivo was simulated in vitro using a scratch-wounded astrocytic monolayer and soluble substances derived from injured rat optic nerves. The soluble substances, applied to the scratch-wounded astrocytes, blocked their migration whereas some known wound-associated factors such as transforming growth factor-beta 1 (TGF-beta 1), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha), and heparin-binding epidermal growth factor in combination with insulin-like growth factor-1 (HB-EGF + IGF-1) stimulated intensive migration with consequent closure of the wound. Migration was not dominated by proliferating cells. Both bFGF and HB-EGF + IGF-1, but not TGF-beta 1, could overcome the blocking effect of the optic nerve-derived substances on astrocyte migration. The induced migration appeared to involve proteoglycans. It is suggestive that appropriate choice of growth factors at the appropriate postinjury period may compensate for the endogenous deficiency in glial supportive factors and/or presence of glial inhibitory factors in the CNS.

Full Text

The Full Text of this article is available as a PDF (909.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. J., Dam D., Lee S., Cotman C. W. Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo. Nature. 1988 Mar 24;332(6162):360–361. doi: 10.1038/332360a0. [DOI] [PubMed] [Google Scholar]
  2. Assoian R. K., Komoriya A., Meyers C. A., Miller D. M., Sporn M. B. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983 Jun 10;258(11):7155–7160. [PubMed] [Google Scholar]
  3. Baghdassarian D., Toru-Delbauffe D., Gavaret J. M., Pierre M. Effects of transforming growth factor-beta 1 on the extracellular matrix and cytoskeleton of cultured astrocytes. Glia. 1993 Mar;7(3):193–202. doi: 10.1002/glia.440070302. [DOI] [PubMed] [Google Scholar]
  4. Bassols A., Massagué J. Transforming growth factor beta regulates the expression and structure of extracellular matrix chondroitin/dermatan sulfate proteoglycans. J Biol Chem. 1988 Feb 25;263(6):3039–3045. [PubMed] [Google Scholar]
  5. Besner G., Higashiyama S., Klagsbrun M. Isolation and characterization of a macrophage-derived heparin-binding growth factor. Cell Regul. 1990 Oct;1(11):811–819. doi: 10.1091/mbc.1.11.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blaugrund E., Duvdevani R., Lavie V., Solomon A., Schwartz M. Disappearance of astrocytes and invasion of macrophages following crush injury of adult rodent optic nerves: implications for regeneration. Exp Neurol. 1992 Oct;118(1):105–115. doi: 10.1016/0014-4886(92)90027-n. [DOI] [PubMed] [Google Scholar]
  7. Blaugrund E., Lavie V., Cohen I., Solomon A., Schreyer D. J., Schwartz M. Axonal regeneration is associated with glial migration: comparison between the injured optic nerves of fish and rats. J Comp Neurol. 1993 Apr 1;330(1):105–112. doi: 10.1002/cne.903300109. [DOI] [PubMed] [Google Scholar]
  8. Bressler J. P., Grotendorst G. R., Levitov C., Hjelmeland L. M. Chemotaxis of rat brain astrocytes to platelet derived growth factor. Brain Res. 1985 Oct 7;344(2):249–254. doi: 10.1016/0006-8993(85)90802-9. [DOI] [PubMed] [Google Scholar]
  9. Chernausek S. D. Insulin-like growth factor-I (IGF-I) production by astroglial cells: regulation and importance for epidermal growth factor-induced cell replication. J Neurosci Res. 1993 Feb 1;34(2):189–197. doi: 10.1002/jnr.490340206. [DOI] [PubMed] [Google Scholar]
  10. Cohen I., Shani Y., Schwartz M. Cloning and characteristics of fish glial fibrillary acidic protein: implications for optic nerve regeneration. J Comp Neurol. 1993 Aug 15;334(3):431–443. doi: 10.1002/cne.903340308. [DOI] [PubMed] [Google Scholar]
  11. Constam D. B., Philipp J., Malipiero U. V., ten Dijke P., Schachner M., Fontana A. Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol. 1992 Mar 1;148(5):1404–1410. [PubMed] [Google Scholar]
  12. David S., Bouchard C., Tsatas O., Giftochristos N. Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system. Neuron. 1990 Oct;5(4):463–469. doi: 10.1016/0896-6273(90)90085-t. [DOI] [PubMed] [Google Scholar]
  13. Eitan S., Zisling R., Cohen A., Belkin M., Hirschberg D. L., Lotan M., Schwartz M. Identification of an interleukin 2-like substance as a factor cytotoxic to oligodendrocytes and associated with central nervous system regeneration. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5442–5446. doi: 10.1073/pnas.89.12.5442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Emoto N., Gonzalez A. M., Walicke P. A., Wada E., Simmons D. M., Shimasaki S., Baird A. Basic fibroblast growth factor (FGF) in the central nervous system: identification of specific loci of basic FGF expression in the rat brain. Growth Factors. 1989;2(1):21–29. doi: 10.3109/08977198909069078. [DOI] [PubMed] [Google Scholar]
  15. Faassen A. E., Schrager J. A., Klein D. J., Oegema T. R., Couchman J. R., McCarthy J. B. A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J Cell Biol. 1992 Jan;116(2):521–531. doi: 10.1083/jcb.116.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Faber-Elman A., Miskin R., Schwartz M. Components of the plasminogen activator system in astrocytes are modulated by tumor necrosis factor-alpha and interleukin-1 beta through similar signal transduction pathways. J Neurochem. 1995 Oct;65(4):1524–1535. doi: 10.1046/j.1471-4159.1995.65041524.x. [DOI] [PubMed] [Google Scholar]
  17. Folkman J., Klagsbrun M. Angiogenic factors. Science. 1987 Jan 23;235(4787):442–447. doi: 10.1126/science.2432664. [DOI] [PubMed] [Google Scholar]
  18. Garcia-Estrada J., Garcia-Segura L. M., Torres-Aleman I. Expression of insulin-like growth factor I by astrocytes in response to injury. Brain Res. 1992 Oct 2;592(1-2):343–347. doi: 10.1016/0006-8993(92)91695-b. [DOI] [PubMed] [Google Scholar]
  19. Giulian D., Lachman L. B. Interleukin-1 stimulation of astroglial proliferation after brain injury. Science. 1985 Apr 26;228(4698):497–499. doi: 10.1126/science.3872478. [DOI] [PubMed] [Google Scholar]
  20. Gluckman P., Klempt N., Guan J., Mallard C., Sirimanne E., Dragunow M., Klempt M., Singh K., Williams C., Nikolics K. A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem Biophys Res Commun. 1992 Jan 31;182(2):593–599. doi: 10.1016/0006-291x(92)91774-k. [DOI] [PubMed] [Google Scholar]
  21. Gospodarowicz D., Cheng J. Heparin protects basic and acidic FGF from inactivation. J Cell Physiol. 1986 Sep;128(3):475–484. doi: 10.1002/jcp.1041280317. [DOI] [PubMed] [Google Scholar]
  22. Gospodarowicz D., Cheng J., Lui G. M., Baird A., Böhlent P. Isolation of brain fibroblast growth factor by heparin-Sepharose affinity chromatography: identity with pituitary fibroblast growth factor. Proc Natl Acad Sci U S A. 1984 Nov;81(22):6963–6967. doi: 10.1073/pnas.81.22.6963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Grotendorst G. R., Soma Y., Takehara K., Charette M. EGF and TGF-alpha are potent chemoattractants for endothelial cells and EGF-like peptides are present at sites of tissue regeneration. J Cell Physiol. 1989 Jun;139(3):617–623. doi: 10.1002/jcp.1041390323. [DOI] [PubMed] [Google Scholar]
  24. Han V. K., Smith A., Myint W., Nygard K., Bradshaw S. Mitogenic activity of epidermal growth factor on newborn rat astroglia: interaction with insulin-like growth factors. Endocrinology. 1992 Sep;131(3):1134–1142. doi: 10.1210/endo.131.3.1380434. [DOI] [PubMed] [Google Scholar]
  25. Hansson H. A., Dahlin L. B., Danielsen N., Fryklund L., Nachemson A. K., Polleryd P., Rozell B., Skottner A., Stemme S., Lundborg G. Evidence indicating trophic importance of IGF-I in regenerating peripheral nerves. Acta Physiol Scand. 1986 Apr;126(4):609–614. doi: 10.1111/j.1748-1716.1986.tb07862.x. [DOI] [PubMed] [Google Scholar]
  26. Heino J., Ignotz R. A., Hemler M. E., Crouse C., Massagué J. Regulation of cell adhesion receptors by transforming growth factor-beta. Concomitant regulation of integrins that share a common beta 1 subunit. J Biol Chem. 1989 Jan 5;264(1):380–388. [PubMed] [Google Scholar]
  27. Higashiyama S., Abraham J. A., Klagsbrun M. Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J Cell Biol. 1993 Aug;122(4):933–940. doi: 10.1083/jcb.122.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Higashiyama S., Abraham J. A., Miller J., Fiddes J. C., Klagsbrun M. A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science. 1991 Feb 22;251(4996):936–939. doi: 10.1126/science.1840698. [DOI] [PubMed] [Google Scholar]
  29. Hiraki Y., Inoue H., Hirai R., Kato Y., Suzuki F. Effect of transforming growth factor beta on cell proliferation and glycosaminoglycan synthesis by rabbit growth-plate chondrocytes in culture. Biochim Biophys Acta. 1988 Apr 2;969(1):91–99. doi: 10.1016/0167-4889(88)90092-4. [DOI] [PubMed] [Google Scholar]
  30. Hirschberg D. L., Schwartz M. Macrophage recruitment to acutely injured central nervous system is inhibited by a resident factor: a basis for an immune-brain barrier. J Neuroimmunol. 1995 Aug;61(1):89–96. doi: 10.1016/0165-5728(95)00087-i. [DOI] [PubMed] [Google Scholar]
  31. Huff K. R., Schreier W., Ibric L. Proliferation-related responses in rat astrocytes to epidermal growth factor. Int J Dev Neurosci. 1990;8(3):255–266. doi: 10.1016/0736-5748(90)90031-v. [DOI] [PubMed] [Google Scholar]
  32. Hunter K. E., Sporn M. B., Davies A. M. Transforming growth factor-betas inhibit mitogen-stimulated proliferation of astrocytes. Glia. 1993 Mar;7(3):203–211. doi: 10.1002/glia.440070303. [DOI] [PubMed] [Google Scholar]
  33. Ignotz R. A., Heino J., Massagué J. Regulation of cell adhesion receptors by transforming growth factor-beta. Regulation of vitronectin receptor and LFA-1. J Biol Chem. 1989 Jan 5;264(1):389–392. [PubMed] [Google Scholar]
  34. Kanje M., Skottner A., Sjöberg J., Lundborg G. Insulin-like growth factor I (IGF-I) stimulates regeneration of the rat sciatic nerve. Brain Res. 1989 May 8;486(2):396–398. doi: 10.1016/0006-8993(89)90531-3. [DOI] [PubMed] [Google Scholar]
  35. Keller K. M., Brauer P. R., Keller J. M. Modulation of cell surface heparan sulfate structure by growth of cells in the presence of chlorate. Biochemistry. 1989 Oct 3;28(20):8100–8107. doi: 10.1021/bi00446a021. [DOI] [PubMed] [Google Scholar]
  36. Kinsella M. G., Wight T. N. Modulation of sulfated proteoglycan synthesis by bovine aortic endothelial cells during migration. J Cell Biol. 1986 Mar;102(3):679–687. doi: 10.1083/jcb.102.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Krane J. F., Gottlieb A. B., Carter D. M., Krueger J. G. The insulin-like growth factor I receptor is overexpressed in psoriatic epidermis, but is differentially regulated from the epidermal growth factor receptor. J Exp Med. 1992 Apr 1;175(4):1081–1090. doi: 10.1084/jem.175.4.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Labourdette G., Janet T., Laeng P., Perraud F., Lawrence D., Pettmann B. Transforming growth factor type beta 1 modulates the effects of basic fibroblast growth factor on growth and phenotypic expression of rat astroblasts in vitro. J Cell Physiol. 1990 Sep;144(3):473–484. doi: 10.1002/jcp.1041440315. [DOI] [PubMed] [Google Scholar]
  39. Lawler J., Hynes R. O. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol. 1986 Nov;103(5):1635–1648. doi: 10.1083/jcb.103.5.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lindholm D., Castrén E., Kiefer R., Zafra F., Thoenen H. Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol. 1992 Apr;117(2):395–400. doi: 10.1083/jcb.117.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Logan A., Berry M. Transforming growth factor-beta 1 and basic fibroblast growth factor in the injured CNS. Trends Pharmacol Sci. 1993 Sep;14(9):337–342. doi: 10.1016/0165-6147(93)90007-7. [DOI] [PubMed] [Google Scholar]
  42. Lotan M., Schwartz M. Cross talk between the immune system and the nervous system in response to injury: implications for regeneration. FASEB J. 1994 Oct;8(13):1026–1033. doi: 10.1096/fasebj.8.13.7926367. [DOI] [PubMed] [Google Scholar]
  43. Lynch S. E., Colvin R. B., Antoniades H. N. Growth factors in wound healing. Single and synergistic effects on partial thickness porcine skin wounds. J Clin Invest. 1989 Aug;84(2):640–646. doi: 10.1172/JCI114210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Madri J. A., Pratt B. M., Tucker A. M. Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J Cell Biol. 1988 Apr;106(4):1375–1384. doi: 10.1083/jcb.106.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Marikovsky M., Breuing K., Liu P. Y., Eriksson E., Higashiyama S., Farber P., Abraham J., Klagsbrun M. Appearance of heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3889–3893. doi: 10.1073/pnas.90.9.3889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Marquardt H., Hunkapiller M. W., Hood L. E., Todaro G. J. Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science. 1984 Mar 9;223(4640):1079–1082. doi: 10.1126/science.6320373. [DOI] [PubMed] [Google Scholar]
  47. Marquardt H., Hunkapiller M. W., Hood L. E., Twardzik D. R., De Larco J. E., Stephenson J. R., Todaro G. J. Transforming growth factors produced by retrovirus-transformed rodent fibroblasts and human melanoma cells: amino acid sequence homology with epidermal growth factor. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4684–4688. doi: 10.1073/pnas.80.15.4684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Martin G. R., Timpl R., Kühn K. Basement membrane proteins: molecular structure and function. Adv Protein Chem. 1988;39:1–50. doi: 10.1016/s0065-3233(08)60374-5. [DOI] [PubMed] [Google Scholar]
  49. Mawatari M., Okamura K., Matsuda T., Hamanaka R., Mizoguchi H., Higashio K., Kohno K., Kuwano M. Tumor necrosis factor and epidermal growth factor modulate migration of human microvascular endothelial cells and production of tissue-type plasminogen activator and its inhibitor. Exp Cell Res. 1991 Feb;192(2):574–580. doi: 10.1016/0014-4827(91)90078-9. [DOI] [PubMed] [Google Scholar]
  50. McCaffrey T. A., Falcone D. J., Du B. Transforming growth factor-beta 1 is a heparin-binding protein: identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-beta 1. J Cell Physiol. 1992 Aug;152(2):430–440. doi: 10.1002/jcp.1041520226. [DOI] [PubMed] [Google Scholar]
  51. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. McCormack S. A., Viar M. J., Johnson L. R. Migration of IEC-6 cells: a model for mucosal healing. Am J Physiol. 1992 Sep;263(3 Pt 1):G426–G435. doi: 10.1152/ajpgi.1992.263.3.G426. [DOI] [PubMed] [Google Scholar]
  53. Mooradian D. L., Lucas R. C., Weatherbee J. A., Furcht L. T. Transforming growth factor-beta 1 binds to immobilized fibronectin. J Cell Biochem. 1989 Dec;41(4):189–200. doi: 10.1002/jcb.240410404. [DOI] [PubMed] [Google Scholar]
  54. Morales T. I., Roberts A. B. Transforming growth factor beta regulates the metabolism of proteoglycans in bovine cartilage organ cultures. J Biol Chem. 1988 Sep 15;263(26):12828–12831. [PubMed] [Google Scholar]
  55. Morganti-Kossmann M. C., Kossmann T., Brandes M. E., Mergenhagen S. E., Wahl S. M. Autocrine and paracrine regulation of astrocyte function by transforming growth factor-beta. J Neuroimmunol. 1992 Jul;39(1-2):163–173. doi: 10.1016/0165-5728(92)90185-n. [DOI] [PubMed] [Google Scholar]
  56. Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol. 1987 Apr;131(1):123–130. doi: 10.1002/jcp.1041310118. [DOI] [PubMed] [Google Scholar]
  57. Nagaoka I., Trapnell B. C., Crystal R. G. Regulation of insulin-like growth factor I gene expression in the human macrophage-like cell line U937. J Clin Invest. 1990 Feb;85(2):448–455. doi: 10.1172/JCI114458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Otto D., Frotscher M., Unsicker K. Basic fibroblast growth factor and nerve growth factor administered in gel foam rescue medial septal neurons after fimbria fornix transection. J Neurosci Res. 1989 Jan;22(1):83–91. doi: 10.1002/jnr.490220111. [DOI] [PubMed] [Google Scholar]
  59. Paralkar V. M., Vukicevic S., Reddi A. H. Transforming growth factor beta type 1 binds to collagen IV of basement membrane matrix: implications for development. Dev Biol. 1991 Feb;143(2):303–308. doi: 10.1016/0012-1606(91)90081-d. [DOI] [PubMed] [Google Scholar]
  60. Perry V. H., Brown M. C., Gordon S. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med. 1987 Apr 1;165(4):1218–1223. doi: 10.1084/jem.165.4.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Pettmann B., Weibel M., Sensenbrenner M., Labourdette G. Purification of two astroglial growth factors from bovine brain. FEBS Lett. 1985 Sep 9;189(1):102–108. doi: 10.1016/0014-5793(85)80851-6. [DOI] [PubMed] [Google Scholar]
  62. Rappolee D. A., Mark D., Banda M. J., Werb Z. Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotyping. Science. 1988 Aug 5;241(4866):708–712. doi: 10.1126/science.3041594. [DOI] [PubMed] [Google Scholar]
  63. Recio-Pinto E., Ishii D. N. Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells. Brain Res. 1984 Jun 8;302(2):323–334. doi: 10.1016/0006-8993(84)90246-4. [DOI] [PubMed] [Google Scholar]
  64. Roberts C. J., Birkenmeier T. M., McQuillan J. J., Akiyama S. K., Yamada S. S., Chen W. T., Yamada K. M., McDonald J. A. Transforming growth factor beta stimulates the expression of fibronectin and of both subunits of the human fibronectin receptor by cultured human lung fibroblasts. J Biol Chem. 1988 Apr 5;263(10):4586–4592. [PubMed] [Google Scholar]
  65. Rom W. N., Basset P., Fells G. A., Nukiwa T., Trapnell B. C., Crysal R. G. Alveolar macrophages release an insulin-like growth factor I-type molecule. J Clin Invest. 1988 Nov;82(5):1685–1693. doi: 10.1172/JCI113781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Saad B., Constam D. B., Ortmann R., Moos M., Fontana A., Schachner M. Astrocyte-derived TGF-beta 2 and NGF differentially regulate neural recognition molecule expression by cultured astrocytes. J Cell Biol. 1991 Oct;115(2):473–484. doi: 10.1083/jcb.115.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Saksela O., Moscatelli D., Sommer A., Rifkin D. B. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol. 1988 Aug;107(2):743–751. doi: 10.1083/jcb.107.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Sievers J., Hausmann B., Unsicker K., Berry M. Fibroblast growth factors promote the survival of adult rat retinal ganglion cells after transection of the optic nerve. Neurosci Lett. 1987 May 6;76(2):157–162. doi: 10.1016/0304-3940(87)90708-7. [DOI] [PubMed] [Google Scholar]
  69. Sivron T., Cohen A., Hirschberg D. L., Jeserich G., Schwartz M. Soluble factor(s) produced in injured fish optic nerve regulate the postinjury number of oligodendrocytes: possible role of macrophages. Glia. 1991;4(6):591–601. doi: 10.1002/glia.440040606. [DOI] [PubMed] [Google Scholar]
  70. Sivron T., Schwartz M. Glial cell types, lineages, and response to injury in rat and fish: implications for regeneration. Glia. 1995 Mar;13(3):157–165. doi: 10.1002/glia.440130302. [DOI] [PubMed] [Google Scholar]
  71. Spencer E. M., Skover G., Hunt T. K. Somatomedins: do they play a pivotal role in wound healing? Prog Clin Biol Res. 1988;266:103–116. [PubMed] [Google Scholar]
  72. Sweetnam P. M., Sanon H. R., White L. A., Brass B. J., Jaye M., Whittemore S. R. Differential effects of acidic and basic fibroblast growth factors on spinal cord cholinergic, GABAergic, and glutamatergic neurons. J Neurochem. 1991 Jul;57(1):237–249. doi: 10.1111/j.1471-4159.1991.tb02121.x. [DOI] [PubMed] [Google Scholar]
  73. Thompson S. A., Higashiyama S., Wood K., Pollitt N. S., Damm D., McEnroe G., Garrick B., Ashton N., Lau K., Hancock N. Characterization of sequences within heparin-binding EGF-like growth factor that mediate interaction with heparin. J Biol Chem. 1994 Jan 28;269(4):2541–2549. [PubMed] [Google Scholar]
  74. Todaro G. J., De Larco J. E., Cohen S. Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature. 1976 Nov 4;264(5581):26–31. doi: 10.1038/264026a0. [DOI] [PubMed] [Google Scholar]
  75. Toru-Delbauffe D., Baghdassarian D., Both D., Bernard R., Rouget P., Pierre M. Effects of TGF beta 1 on the proliferation and differentiation of an immortalized astrocyte cell line: relationship with extracellular matrix. Exp Cell Res. 1992 Oct;202(2):316–325. doi: 10.1016/0014-4827(92)90081-i. [DOI] [PubMed] [Google Scholar]
  76. Tranque P. A., Calle R., Naftolin F., Robbins R. Involvement of protein kinase-C in the mitogenic effect of insulin-like growth factor-I on rat astrocytes. Endocrinology. 1992 Oct;131(4):1948–1954. doi: 10.1210/endo.131.4.1396338. [DOI] [PubMed] [Google Scholar]
  77. Turksen K., Choi Y., Fuchs E. Transforming growth factor alpha induces collagen degradation and cell migration in differentiating human epidermal raft cultures. Cell Regul. 1991 Aug;2(8):613–625. doi: 10.1091/mbc.2.8.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Unsicker K., Flanders K. C., Cissel D. S., Lafyatis R., Sporn M. B. Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience. 1991;44(3):613–625. doi: 10.1016/0306-4522(91)90082-y. [DOI] [PubMed] [Google Scholar]
  79. Vlodavsky I., Folkman J., Sullivan R., Fridman R., Ishai-Michaeli R., Sasse J., Klagsbrun M. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2292–2296. doi: 10.1073/pnas.84.8.2292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Westermark B. Density dependent proliferation of human glia cells stimulated by epidermal growth factor. Biochem Biophys Res Commun. 1976 Mar 22;69(2):304–310. doi: 10.1016/0006-291x(76)90522-2. [DOI] [PubMed] [Google Scholar]
  81. Whitby D. J., Ferguson M. W. Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol. 1991 Sep;147(1):207–215. doi: 10.1016/s0012-1606(05)80018-1. [DOI] [PubMed] [Google Scholar]
  82. Wight T. N., Kinsella M. G., Qwarnström E. E. The role of proteoglycans in cell adhesion, migration and proliferation. Curr Opin Cell Biol. 1992 Oct;4(5):793–801. doi: 10.1016/0955-0674(92)90102-i. [DOI] [PubMed] [Google Scholar]
  83. Yu A. C., Lee Y. L., Eng L. F. Astrogliosis in culture: I. The model and the effect of antisense oligonucleotides on glial fibrillary acidic protein synthesis. J Neurosci Res. 1993 Feb 15;34(3):295–303. doi: 10.1002/jnr.490340306. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES