Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):172–179. doi: 10.1172/JCI118386

Inhibition of cyclic 3'-5'-guanosine monophosphate-specific phosphodiesterase selectively vasodilates the pulmonary circulation in chronically hypoxic rats.

A H Cohen 1, K Hanson 1, K Morris 1, B Fouty 1, I F McMurty 1, W Clarke 1, D M Rodman 1
PMCID: PMC507076  PMID: 8550830

Abstract

While it is known that nitric oxide (NO) is an important modulator of tone in the hypertensive pulmonary circulation, the roles of cyclic 3'-5'-guanosine monophosphate (cGMP) and cGMP-phosphodiesterase (PDE) are uncertain. We found that isolated lung perfusate levels of cGMP were over ninefold elevated in hypertensive vs. normotensive control rats. 98-100% of lung cGMP hydrolytic activity was cGMP-specific PDE5, with no significant decrease in PDE activity in hypertensive lungs, suggesting that the elevation in cGMP was due to accelerated production rather than reduced degradation. In pulmonary hypertensive rat lungs, in vitro, cGMP-PDE inhibition by E4021[1-(6-chloro-4-(3,4-methylbenzyl) amino-quinazolin-2-yl)piperdine-4-carboxylate], increased perfusate cGMP threefold, reduced hypoxic vasoconstriction by 58 +/- 2%, and reduced baseline pulmonary artery pressure by 37 +/- 5%. In conscious, pulmonary hypertensive rats, intravenous administration of E4021 reduced hypoxic vasoconstriction by 68 +/- 8%, pulmonary artery pressure by 12.6 +/- 3.7% and total pulmonary resistance by 13.1 +/- 6.4%, with no significant effect on cardiac output, systemic pressure, and resistance. Comparison of E4021 to inhaled nitric oxide demonstrated that cGMP-PDE inhibition was as selective and as effective as inhaled NO.

Full Text

The Full Text of this article is available as a PDF (191.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adnot S., Kouyoumdjian C., Defouilloy C., Andrivet P., Sediame S., Herigault R., Fratacci M. D. Hemodynamic and gas exchange responses to infusion of acetylcholine and inhalation of nitric oxide in patients with chronic obstructive lung disease and pulmonary hypertension. Am Rev Respir Dis. 1993 Aug;148(2):310–316. doi: 10.1164/ajrccm/148.2.310. [DOI] [PubMed] [Google Scholar]
  2. Ahn H. S., Crim W., Pitts B., Sybertz E. J. Calcium-calmodulin-stimulated and cyclic-GMP-specific phosphodiesterases. Tissue distribution, drug sensitivity, and regulation of cyclic GMP levels. Adv Second Messenger Phosphoprotein Res. 1992;25:271–288. [PubMed] [Google Scholar]
  3. Barst R. J., Rubin L. J., McGoon M. D., Caldwell E. J., Long W. A., Levy P. S. Survival in primary pulmonary hypertension with long-term continuous intravenous prostacyclin. Ann Intern Med. 1994 Sep 15;121(6):409–415. doi: 10.7326/0003-4819-121-6-199409150-00003. [DOI] [PubMed] [Google Scholar]
  4. Baudouin S. V., Bath P., Martin J. F., Du Bois R., Evans T. W. L-arginine infusion has no effect on systemic haemodynamics in normal volunteers, or systemic and pulmonary haemodynamics in patients with elevated pulmonary vascular resistance. Br J Clin Pharmacol. 1993 Jul;36(1):45–49. doi: 10.1111/j.1365-2125.1993.tb05890.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beavo J. A., Hardman J. G., Sutherland E. W. Hydrolysis of cyclic guanosine and adenosine 3',5'-monophosphates by rat and bovine tissues. J Biol Chem. 1970 Nov 10;245(21):5649–5655. [PubMed] [Google Scholar]
  6. Bigatello L. M., Hurford W. E., Kacmarek R. M., Roberts J. D., Jr, Zapol W. M. Prolonged inhalation of low concentrations of nitric oxide in patients with severe adult respiratory distress syndrome. Effects on pulmonary hemodynamics and oxygenation. Anesthesiology. 1994 Apr;80(4):761–770. doi: 10.1097/00000542-199404000-00007. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Braner D. A., Fineman J. R., Chang R., Soifer S. J. M&B 22948, a cGMP phosphodiesterase inhibitor, is a pulmonary vasodilator in lambs. Am J Physiol. 1993 Jan;264(1 Pt 2):H252–H258. doi: 10.1152/ajpheart.1993.264.1.H252. [DOI] [PubMed] [Google Scholar]
  9. Dundore R. L., Habeeb P. G., Pratt P. F., Becker L. T., Clas D. M., Buchholz R. A. Differential hemodynamic responses to selective inhibitors of cyclic nucleotide phosphodiesterases in conscious rats. J Cardiovasc Pharmacol. 1992 Jun;19(6):937–944. doi: 10.1097/00005344-199206000-00015. [DOI] [PubMed] [Google Scholar]
  10. Fineman J. R., Chang R., Soifer S. J. EDRF inhibition augments pulmonary hypertension in intact newborn lambs. Am J Physiol. 1992 May;262(5 Pt 2):H1365–H1371. doi: 10.1152/ajpheart.1992.262.5.H1365. [DOI] [PubMed] [Google Scholar]
  11. Fratacci M. D., Frostell C. G., Chen T. Y., Wain J. C., Jr, Robinson D. R., Zapol W. M. Inhaled nitric oxide. A selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep. Anesthesiology. 1991 Dec;75(6):990–999. doi: 10.1097/00000542-199112000-00011. [DOI] [PubMed] [Google Scholar]
  12. Giaid A., Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995 Jul 27;333(4):214–221. doi: 10.1056/NEJM199507273330403. [DOI] [PubMed] [Google Scholar]
  13. Isaacson T. C., Hampl V., Weir E. K., Nelson D. P., Archer S. L. Increased endothelium-derived NO in hypertensive pulmonary circulation of chronically hypoxic rats. J Appl Physiol (1985) 1994 Feb;76(2):933–940. doi: 10.1152/jappl.1994.76.2.933. [DOI] [PubMed] [Google Scholar]
  14. Kinsella J. P., Neish S. R., Ivy D. D., Shaffer E., Abman S. H. Clinical responses to prolonged treatment of persistent pulmonary hypertension of the newborn with low doses of inhaled nitric oxide. J Pediatr. 1993 Jul;123(1):103–108. doi: 10.1016/s0022-3476(05)81551-3. [DOI] [PubMed] [Google Scholar]
  15. McMahon T. J., Ignarro L. J., Kadowitz P. J. Influence of Zaprinast on vascular tone and vasodilator responses in the cat pulmonary vascular bed. J Appl Physiol (1985) 1993 Apr;74(4):1704–1711. doi: 10.1152/jappl.1993.74.4.1704. [DOI] [PubMed] [Google Scholar]
  16. Mlczoch J., Weir E. K., Grover R. F. Inhibition of hypoxic pulmonary vasoconstriction by dipyridamole is not platelet mediated. Can J Physiol Pharmacol. 1977 Jun;55(3):448–451. doi: 10.1139/y77-064. [DOI] [PubMed] [Google Scholar]
  17. Morice A. H., Pepke-Zaba J., Brown M. J., Thomas P. S., Higenbottam T. W. Atrial natriuretic peptide in primary pulmonary hypertension. Eur Respir J. 1990 Sep;3(8):910–913. [PubMed] [Google Scholar]
  18. Oka M., Hasunuma K., Webb S. A., Stelzner T. J., Rodman D. M., McMurtry I. F. EDRF suppresses an unidentified vasoconstrictor mechanism in hypertensive rat lungs. Am J Physiol. 1993 Jun;264(6 Pt 1):L587–L597. doi: 10.1152/ajplung.1993.264.6.L587. [DOI] [PubMed] [Google Scholar]
  19. Oka M., Morris K. G., McMurtry I. F. NIP-121 is more effective than nifedipine in acutely reversing chronic pulmonary hypertension. J Appl Physiol (1985) 1993 Sep;75(3):1075–1080. doi: 10.1152/jappl.1993.75.3.1075. [DOI] [PubMed] [Google Scholar]
  20. Popescu L. M., Panoiu C., Hinescu M., Nutu O. The mechanism of cGMP-induced relaxation in vascular smooth muscle. Eur J Pharmacol. 1985 Jan 8;107(3):393–394. doi: 10.1016/0014-2999(85)90269-9. [DOI] [PubMed] [Google Scholar]
  21. Rich G. F., Roos C. M., Anderson S. M., Urich D. C., Daugherty M. O., Johns R. A. Inhaled nitric oxide: dose response and the effects of blood in the isolated rat lung. J Appl Physiol (1985) 1993 Sep;75(3):1278–1284. doi: 10.1152/jappl.1993.75.3.1278. [DOI] [PubMed] [Google Scholar]
  22. Rich S., Kaufmann E., Levy P. S. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med. 1992 Jul 9;327(2):76–81. doi: 10.1056/NEJM199207093270203. [DOI] [PubMed] [Google Scholar]
  23. Rosenkrantz J. G., Lynch F. P., Vogel J. H. Hypoxic pulmonary hypertension: its modification by dipyridamole. J Surg Res. 1972 May;12(5):330–333. doi: 10.1016/0022-4804(72)90115-1. [DOI] [PubMed] [Google Scholar]
  24. Russ R. D., Walker B. R. Maintained endothelium-dependent pulmonary vasodilation following chronic hypoxia in the rat. J Appl Physiol (1985) 1993 Jan;74(1):339–344. doi: 10.1152/jappl.1993.74.1.339. [DOI] [PubMed] [Google Scholar]
  25. Schoeffter P., Lugnier C., Demesy-Waeldele F., Stoclet J. C. Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors. Biochem Pharmacol. 1987 Nov 15;36(22):3965–3972. doi: 10.1016/0006-2952(87)90465-5. [DOI] [PubMed] [Google Scholar]
  26. Shaul P. W., North A. J., Brannon T. S., Ujiie K., Wells L. B., Nisen P. A., Lowenstein C. J., Snyder S. H., Star R. A. Prolonged in vivo hypoxia enhances nitric oxide synthase type I and type III gene expression in adult rat lung. Am J Respir Cell Mol Biol. 1995 Aug;13(2):167–174. doi: 10.1165/ajrcmb.13.2.7542896. [DOI] [PubMed] [Google Scholar]
  27. Souness J. E., Brazdil R., Diocee B. K., Jordan R. Role of selective cyclic GMP phosphodiesterase inhibition in the myorelaxant actions of M&B 22,948, MY-5445, vinpocetine and 1-methyl-3-isobutyl-8-(methylamino)xanthine. Br J Pharmacol. 1989 Nov;98(3):725–734. doi: 10.1111/j.1476-5381.1989.tb14599.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stamler J. S., Loh E., Roddy M. A., Currie K. E., Creager M. A. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation. 1994 May;89(5):2035–2040. doi: 10.1161/01.cir.89.5.2035. [DOI] [PubMed] [Google Scholar]
  29. Surdacki A., Zmudka K., Bieroń K., Kostka-Trabka E., Dubiel J. S., Gryglewski R. J. Lack of beneficial effects of L-arginine infusion in primary pulmonary hypertension. Wien Klin Wochenschr. 1994;106(16):521–526. [PubMed] [Google Scholar]
  30. Tiktinsky M. H., Cummings J. J., Morin F. C., 3rd Acetylcholine increases pulmonary blood flow in intact fetuses via endothelium-dependent vasodilation. Am J Physiol. 1992 Feb;262(2 Pt 2):H406–H410. doi: 10.1152/ajpheart.1992.262.2.H406. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES