Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):196–201. doi: 10.1172/JCI118389

A single strand conformation polymorphism study of CD40 ligand. Efficient mutation analysis and carrier detection for X-linked hyper IgM syndrome.

Q Lin 1, J Rohrer 1, R C Allen 1, M Larché 1, J M Greene 1, A O Shigeoka 1, R A Gatti 1, D C Derauf 1, J W Belmont 1, M E Conley 1
PMCID: PMC507079  PMID: 8550833

Abstract

Mutations in the gene for CD40 ligand are responsible for the X-linked form of hyper IgM syndrome. However, no clinical or laboratory findings that reliably distinguish X-linked disease from other forms of hyper IgM syndrome have been reported, nor are there tests available that can be used to confidently provide carrier detection. To identify efficiently mutations in the gene for CD40 ligand, eight pairs of PCR primers that could be used to screen genomic DNA by single strand conformation polymorphism (SSCP) were designed. 11 different mutations were found in DNA from all 13 patients whose activated T cells failed to bind a recombinant CD40 construct. The exact nature of four of these mutations, a deletion and three splice defects, could not be determined by cDNA sequencing. In addition, SSCP analysis permitted rapid carrier detection in two families in whom the source of the mutation was most likely a male with gonadal chimerism who passed the disorder on to some but not all of his daughters. These studies document the utility of SSCP analysis for both mutation detection and carrier detection in X-linked hyper IgM syndrome.

Full Text

The Full Text of this article is available as a PDF (244.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. C., Armitage R. J., Conley M. E., Rosenblatt H., Jenkins N. A., Copeland N. G., Bedell M. A., Edelhoff S., Disteche C. M., Simoneaux D. K. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 1993 Feb 12;259(5097):990–993. doi: 10.1126/science.7679801. [DOI] [PubMed] [Google Scholar]
  2. Allen R. C., Spriggs M. K., Belmont J. W. Dinucleotide repeat polymorphism in the human CD40 ligand gene. Hum Mol Genet. 1993 Jun;2(6):828–828. doi: 10.1093/hmg/2.6.828-a. [DOI] [PubMed] [Google Scholar]
  3. Armitage R. J., Fanslow W. C., Strockbine L., Sato T. A., Clifford K. N., Macduff B. M., Anderson D. M., Gimpel S. D., Davis-Smith T., Maliszewski C. R. Molecular and biological characterization of a murine ligand for CD40. Nature. 1992 May 7;357(6373):80–82. doi: 10.1038/357080a0. [DOI] [PubMed] [Google Scholar]
  4. Armitage R. J., Macduff B. M., Spriggs M. K., Fanslow W. C. Human B cell proliferation and Ig secretion induced by recombinant CD40 ligand are modulated by soluble cytokines. J Immunol. 1993 May 1;150(9):3671–3680. [PubMed] [Google Scholar]
  5. Aruffo A., Farrington M., Hollenbaugh D., Li X., Milatovich A., Nonoyama S., Bajorath J., Grosmaire L. S., Stenkamp R., Neubauer M. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 1993 Jan 29;72(2):291–300. doi: 10.1016/0092-8674(93)90668-g. [DOI] [PubMed] [Google Scholar]
  6. Conley M. E., Fitch-Hilgenberg M. E., Cleveland J. L., Parolini O., Rohrer J. Screening of genomic DNA to identify mutations in the gene for Bruton's tyrosine kinase. Hum Mol Genet. 1994 Oct;3(10):1751–1756. doi: 10.1093/hmg/3.10.1751. [DOI] [PubMed] [Google Scholar]
  7. Conley M. E., Larché M., Bonagura V. R., Lawton A. R., 3rd, Buckley R. H., Fu S. M., Coustan-Smith E., Herrod H. G., Campana D. Hyper IgM syndrome associated with defective CD40-mediated B cell activation. J Clin Invest. 1994 Oct;94(4):1404–1409. doi: 10.1172/JCI117476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DiSanto J. P., Bonnefoy J. Y., Gauchat J. F., Fischer A., de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature. 1993 Feb 11;361(6412):541–543. doi: 10.1038/361541a0. [DOI] [PubMed] [Google Scholar]
  9. DiSanto J. P., Markiewicz S., Gauchat J. F., Bonnefoy J. Y., Fischer A., de Saint Basile G. Brief report: prenatal diagnosis of X-linked hyper-IgM syndrome. N Engl J Med. 1994 Apr 7;330(14):969–973. doi: 10.1056/NEJM199404073301404. [DOI] [PubMed] [Google Scholar]
  10. Durandy A., De Saint Basile G., Lisowska-Grospierre B., Gauchat J. F., Forveille M., Kroczek R. A., Bonnefoy J. Y., Fischer A. Undetectable CD40 ligand expression on T cells and low B cell responses to CD40 binding agonists in human newborns. J Immunol. 1995 Feb 15;154(4):1560–1568. [PubMed] [Google Scholar]
  11. Edwards A., Civitello A., Hammond H. A., Caskey C. T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet. 1991 Oct;49(4):746–756. [PMC free article] [PubMed] [Google Scholar]
  12. Farrington M., Grosmaire L. S., Nonoyama S., Fischer S. H., Hollenbaugh D., Ledbetter J. A., Noelle R. J., Aruffo A., Ochs H. D. CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1099–1103. doi: 10.1073/pnas.91.3.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gauchat J. F., Aversa G., Gascan H., de Vries J. E. Modulation of IL-4 induced germline epsilon RNA synthesis in human B cells by tumor necrosis factor-alpha, anti-CD40 monoclonal antibodies or transforming growth factor-beta correlates with levels of IgE production. Int Immunol. 1992 Mar;4(3):397–406. doi: 10.1093/intimm/4.3.397. [DOI] [PubMed] [Google Scholar]
  14. Graf D., Korthäuer U., Mages H. W., Senger G., Kroczek R. A. Cloning of TRAP, a ligand for CD40 on human T cells. Eur J Immunol. 1992 Dec;22(12):3191–3194. doi: 10.1002/eji.1830221226. [DOI] [PubMed] [Google Scholar]
  15. Hendriks R. W., Kraakman M. E., Craig I. W., Espanol T., Schuurman R. K. Evidence that in X-linked immunodeficiency with hyperimmunoglobulinemia M the intrinsic immunoglobulin heavy chain class switch mechanism is intact. Eur J Immunol. 1990 Dec;20(12):2603–2608. doi: 10.1002/eji.1830201212. [DOI] [PubMed] [Google Scholar]
  16. Highsmith W. E., Burch L. H., Zhou Z., Olsen J. C., Boat T. E., Spock A., Gorvoy J. D., Quittel L., Friedman K. J., Silverman L. M. A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med. 1994 Oct 13;331(15):974–980. doi: 10.1056/NEJM199410133311503. [DOI] [PubMed] [Google Scholar]
  17. Hollenbaugh D., Grosmaire L. S., Kullas C. D., Chalupny N. J., Braesch-Andersen S., Noelle R. J., Stamenkovic I., Ledbetter J. A., Aruffo A. The human T cell antigen gp39, a member of the TNF gene family, is a ligand for the CD40 receptor: expression of a soluble form of gp39 with B cell co-stimulatory activity. EMBO J. 1992 Dec;11(12):4313–4321. doi: 10.1002/j.1460-2075.1992.tb05530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hollenbaugh D., Wu L. H., Ochs H. D., Nonoyama S., Grosmaire L. S., Ledbetter J. A., Noelle R. J., Hill H., Aruffo A. The random inactivation of the X chromosome carrying the defective gene responsible for X-linked hyper IgM syndrome (X-HIM) in female carriers of HIGM1. J Clin Invest. 1994 Aug;94(2):616–622. doi: 10.1172/JCI117377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Iseki M., Anzo M., Yamashita N., Matsuo N. Hyper-IgM immunodeficiency with disseminated cryptococcosis. Acta Paediatr. 1994 Jul;83(7):780–782. doi: 10.1111/j.1651-2227.1994.tb13140.x. [DOI] [PubMed] [Google Scholar]
  20. Korthäuer U., Graf D., Mages H. W., Brière F., Padayachee M., Malcolm S., Ugazio A. G., Notarangelo L. D., Levinsky R. J., Kroczek R. A. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993 Feb 11;361(6412):539–541. doi: 10.1038/361539a0. [DOI] [PubMed] [Google Scholar]
  21. Kroczek R. A., Graf D., Brugnoni D., Giliani S., Korthüer U., Ugazio A., Senger G., Mages H. W., Villa A., Notarangelo L. D. Defective expression of CD40 ligand on T cells causes "X-linked immunodeficiency with hyper-IgM (HIGM1)". Immunol Rev. 1994 Apr;138:39–59. doi: 10.1111/j.1600-065x.1994.tb00846.x. [DOI] [PubMed] [Google Scholar]
  22. Lakich D., Kazazian H. H., Jr, Antonarakis S. E., Gitschier J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet. 1993 Nov;5(3):236–241. doi: 10.1038/ng1193-236. [DOI] [PubMed] [Google Scholar]
  23. Macchi P., Villa A., Strina D., Sacco M. G., Morali F., Brugnoni D., Giliani S., Mantuano E., Fasth A., Andersson B. Characterization of nine novel mutations in the CD40 ligand gene in patients with X-linked hyper IgM syndrome of various ancestry. Am J Hum Genet. 1995 Apr;56(4):898–906. [PMC free article] [PubMed] [Google Scholar]
  24. Naylor J. A., Green P. M., Rizza C. R., Giannelli F. Factor VIII gene explains all cases of haemophilia A. Lancet. 1992 Oct 31;340(8827):1066–1067. doi: 10.1016/0140-6736(92)93080-7. [DOI] [PubMed] [Google Scholar]
  25. Nonoyama S., Penix L. A., Edwards C. P., Lewis D. B., Ito S., Aruffo A., Wilson C. B., Ochs H. D. Diminished expression of CD40 ligand by activated neonatal T cells. J Clin Invest. 1995 Jan;95(1):66–75. doi: 10.1172/JCI117677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Notarangelo L. D., Duse M., Ugazio A. G. Immunodeficiency with hyper-IgM (HIM). Immunodefic Rev. 1992;3(2):101–121. [PubMed] [Google Scholar]
  27. Padayachee M., Levinsky R. J., Kinnon C., Finn A., McKeown C., Feighery C., Notarangelo L. D., Hendriks R. W., Read A. P., Malcolm S. Mapping of the X linked form of hyper IgM syndrome (HIGM1) J Med Genet. 1993 Mar;30(3):202–205. doi: 10.1136/jmg.30.3.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peitsch M. C., Jongeneel C. V. A 3-D model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. Int Immunol. 1993 Feb;5(2):233–238. doi: 10.1093/intimm/5.2.233. [DOI] [PubMed] [Google Scholar]
  29. Ramesh N., Fuleihan R., Ramesh V., Lederman S., Yellin M. J., Sharma S., Chess L., Rosen F. S., Geha R. S. Deletions in the ligand for CD40 in X-linked immunoglobulin deficiency with normal or elevated IgM (HIGMX-1). Int Immunol. 1993 Jul;5(7):769–773. doi: 10.1093/intimm/5.7.769. [DOI] [PubMed] [Google Scholar]
  30. Shapira S. K., Vercelli D., Jabara H. H., Fu S. M., Geha R. S. Molecular analysis of the induction of immunoglobulin E synthesis in human B cells by interleukin 4 and engagement of CD40 antigen. J Exp Med. 1992 Jan 1;175(1):289–292. doi: 10.1084/jem.175.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shimadzu M., Nunoi H., Terasaki H., Ninomiya R., Iwata M., Kanegasaka S., Matsuda I. Structural organization of the gene for CD40 ligand: molecular analysis for diagnosis of X-linked hyper-IgM syndrome. Biochim Biophys Acta. 1995 Jan 2;1260(1):67–72. doi: 10.1016/0167-4781(94)00179-7. [DOI] [PubMed] [Google Scholar]
  32. Villa A., Notarangelo L. D., Di Santo J. P., Macchi P. P., Strina D., Frattini A., Lucchini F., Patrosso C. M., Giliani S., Mantuano E. Organization of the human CD40L gene: implications for molecular defects in X chromosome-linked hyper-IgM syndrome and prenatal diagnosis. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2110–2114. doi: 10.1073/pnas.91.6.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Villa A., Strina D., Macchi P., Patrosso M. C., Vezzoni P., Tovo P. A., Giliani S., Ugazio A. G., Notarangelo L. D. C to T mutation causing premature termination of CD40 ligand at amino acid 221 in a patient affected by hyper IgM syndrome. Hum Mutat. 1994;3(1):73–75. doi: 10.1002/humu.1380030115. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES