Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):209–216. doi: 10.1172/JCI118392

Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke.

E S Connolly Jr 1, C J Winfree 1, T A Springer 1, Y Naka 1, H Liao 1, S D Yan 1, D M Stern 1, R A Solomon 1, J C Gutierrez-Ramos 1, D J Pinsky 1
PMCID: PMC507081  PMID: 8550836

Abstract

Acute neutrophil (PMN) recruitment to postischemic cardiac or pulmonary tissue has deleterious effects in the early reperfusion period, but the mechanisms and effects of neutrophil influx in the pathogenesis of evolving stroke remain controversial. To investigate whether PMNs contribute to adverse neurologic sequelae and mortality after stroke, and to study the potential role of the leukocyte adhesion molecule intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of stroke, we used a murine model of transient focal cerebral ischemia consisting of intraluminal middle cerebral artery occlusion for 45 min followed by 22 h of reperfusion. PMN accumulation, monitored by deposition of 111In-labeled PMNs in postischemic cerebral tissue, was increased 2.5-fold in the ipsilateral (infarcted) hemisphere compared with the contralateral (noninfarcted) hemisphere (P < 0.01). Mice immunodepleted of neutrophils before surgery demonstrated a 3.0-fold reduction in infarct volumes (P < 0.001), based on triphenyltetrazolium chloride staining of serial cerebral sections, improved ipsilateral cortical cerebral blood flow (measured by laser Doppler), and reduced neurological deficit compared with controls. In wild-type mice subjected to 45 min of ischemia followed by 22 h of reperfusion, ICAM-1 mRNA was increased in the ipsilateral hemisphere, with immunohistochemistry localizing increased ICAM-1 expression on cerebral microvascular endothelium. The role of ICAM-1 expression in stroke was investigated in homozygous null ICAM-1 mice (ICAM-1 -/-) in comparison with wild-type controls (ICAM-1 +/+). ICAM-1 -/- mice demonstrated a 3.7-fold reduction in infarct volume (P < 0.005), a 35% increase in survival (P < 0.05), and reduced neurologic deficit compared with ICAM-1 +/+ controls. Cerebral blood flow to the infarcted hemisphere was 3.1-fold greater in ICAM-1 -/- mice compared with ICAM-1 +/+ controls (P < 0.01), suggesting an important role for ICAM-1 in the genesis of postischemic cerebral no-reflow. Because PMN-depleted and ICAM-1-deficient mice are relatively resistant to cerebral ischemia-reperfusion injury, these studies suggest an important role for ICAM-1-mediated PMN adhesion in the pathophysiology of evolving stroke.

Full Text

The Full Text of this article is available as a PDF (622.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnould T., Michiels C., Remacle J. Increased PMN adherence on endothelial cells after hypoxia: involvement of PAF, CD18/CD11b, and ICAM-1. Am J Physiol. 1993 May;264(5 Pt 1):C1102–C1110. doi: 10.1152/ajpcell.1993.264.5.C1102. [DOI] [PubMed] [Google Scholar]
  2. Aspey B. S., Jessimer C., Pereira S., Harrison M. J. Do leukocytes have a role in the cerebral no-reflow phenomenon? J Neurol Neurosurg Psychiatry. 1989 Apr;52(4):526–528. doi: 10.1136/jnnp.52.4.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballantyne C. M., Kozak C. A., O'Brien W. E., Beaudet A. L. Assignment of the gene for intercellular adhesion molecule-1 (Icam-1) to proximal mouse chromosome 9. Genomics. 1991 Mar;9(3):547–550. doi: 10.1016/0888-7543(91)90423-c. [DOI] [PubMed] [Google Scholar]
  4. Barone F. C., Knudsen D. J., Nelson A. H., Feuerstein G. Z., Willette R. N. Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy. J Cereb Blood Flow Metab. 1993 Jul;13(4):683–692. doi: 10.1038/jcbfm.1993.87. [DOI] [PubMed] [Google Scholar]
  5. Bederson J. B., Pitts L. H., Germano S. M., Nishimura M. C., Davis R. L., Bartkowski H. M. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986 Nov-Dec;17(6):1304–1308. doi: 10.1161/01.str.17.6.1304. [DOI] [PubMed] [Google Scholar]
  6. Bederson J. B., Pitts L. H., Tsuji M., Nishimura M. C., Davis R. L., Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke. 1986 May-Jun;17(3):472–476. doi: 10.1161/01.str.17.3.472. [DOI] [PubMed] [Google Scholar]
  7. Bednar M. M., Raymond S., McAuliffe T., Lodge P. A., Gross C. E. The role of neutrophils and platelets in a rabbit model of thromboembolic stroke. Stroke. 1991 Jan;22(1):44–50. doi: 10.1161/01.str.22.1.44. [DOI] [PubMed] [Google Scholar]
  8. Chopp M., Zhang R. L., Chen H., Li Y., Jiang N., Rusche J. R. Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke. 1994 Apr;25(4):869–876. doi: 10.1161/01.str.25.4.869. [DOI] [PubMed] [Google Scholar]
  9. Clark R. K., Lee E. V., Fish C. J., White R. F., Price W. J., Jonak Z. L., Feuerstein G. Z., Barone F. C. Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study. Brain Res Bull. 1993;31(5):565–572. doi: 10.1016/0361-9230(93)90124-t. [DOI] [PubMed] [Google Scholar]
  10. Clark R. K., Lee E. V., White R. F., Jonak Z. L., Feuerstein G. Z., Barone F. C. Reperfusion following focal stroke hastens inflammation and resolution of ischemic injured tissue. Brain Res Bull. 1994;35(4):387–392. doi: 10.1016/0361-9230(94)90119-8. [DOI] [PubMed] [Google Scholar]
  11. Clark W. M., Madden K. P., Rothlein R., Zivin J. A. Reduction of central nervous system ischemic injury by monoclonal antibody to intercellular adhesion molecule. J Neurosurg. 1991 Oct;75(4):623–627. doi: 10.3171/jns.1991.75.4.0623. [DOI] [PubMed] [Google Scholar]
  12. Clark W. M., Madden K. P., Rothlein R., Zivin J. A. Reduction of central nervous system ischemic injury in rabbits using leukocyte adhesion antibody treatment. Stroke. 1991 Jul;22(7):877–883. doi: 10.1161/01.str.22.7.877. [DOI] [PubMed] [Google Scholar]
  13. Dirnagl U., Kaplan B., Jacewicz M., Pulsinelli W. Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model. J Cereb Blood Flow Metab. 1989 Oct;9(5):589–596. doi: 10.1038/jcbfm.1989.84. [DOI] [PubMed] [Google Scholar]
  14. Dutka A. J., Kochanek P. M., Hallenbeck J. M. Influence of granulocytopenia on canine cerebral ischemia induced by air embolism. Stroke. 1989 Mar;20(3):390–395. doi: 10.1161/01.str.20.3.390. [DOI] [PubMed] [Google Scholar]
  15. Ernst E., Matrai A., Paulsen F. Leukocyte rheology in recent stroke. Stroke. 1987 Jan-Feb;18(1):59–62. doi: 10.1161/01.str.18.1.59. [DOI] [PubMed] [Google Scholar]
  16. Garcia J. H., Kamijyo Y. Cerebral infarction. Evolution of histopathological changes after occlusion of a middle cerebral artery in primates. J Neuropathol Exp Neurol. 1974 Jul;33(3):408–421. doi: 10.1097/00005072-197407000-00007. [DOI] [PubMed] [Google Scholar]
  17. Geng J. G., Bevilacqua M. P., Moore K. L., McIntyre T. M., Prescott S. M., Kim J. M., Bliss G. A., Zimmerman G. A., McEver R. P. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature. 1990 Feb 22;343(6260):757–760. doi: 10.1038/343757a0. [DOI] [PubMed] [Google Scholar]
  18. Granger D. N. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol. 1988 Dec;255(6 Pt 2):H1269–H1275. doi: 10.1152/ajpheart.1988.255.6.H1269. [DOI] [PubMed] [Google Scholar]
  19. Grøgaard B., Schürer L., Gerdin B., Arfors K. E. Delayed hypoperfusion after incomplete forebrain ischemia in the rat. The role of polymorphonuclear leukocytes. J Cereb Blood Flow Metab. 1989 Aug;9(4):500–505. doi: 10.1038/jcbfm.1989.73. [DOI] [PubMed] [Google Scholar]
  20. Hallenbeck J. M., Dutka A. J., Kochanek P. M., Siren A., Pezeshkpour G. H., Feuerstein G. Stroke risk factors prepare rat brainstem tissues for modified local Shwartzman reaction. Stroke. 1988 Jul;19(7):863–869. doi: 10.1161/01.str.19.7.863. [DOI] [PubMed] [Google Scholar]
  21. Hallenbeck J. M., Dutka A. J., Tanishima T., Kochanek P. M., Kumaroo K. K., Thompson C. B., Obrenovitch T. P., Contreras T. J. Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke. 1986 Mar-Apr;17(2):246–253. doi: 10.1161/01.str.17.2.246. [DOI] [PubMed] [Google Scholar]
  22. Hodes R. J., Handwerger B. S., Terry W. D. Synergy between subpopulations of mouse spleen cells in the in vitro generation of cell-mediated cytotoxicity: evidence for the involvement of a non-T cell. J Exp Med. 1974 Dec 1;140(6):1646–1659. doi: 10.1084/jem.140.6.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Huang Z., Huang P. L., Panahian N., Dalkara T., Fishman M. C., Moskowitz M. A. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994 Sep 23;265(5180):1883–1885. doi: 10.1126/science.7522345. [DOI] [PubMed] [Google Scholar]
  24. Jander S., Kraemer M., Schroeter M., Witte O. W., Stoll G. Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab. 1995 Jan;15(1):42–51. doi: 10.1038/jcbfm.1995.5. [DOI] [PubMed] [Google Scholar]
  25. Jerome S. N., Doré M., Paulson J. C., Smith C. W., Korthuis R. J. P-selectin and ICAM-1-dependent adherence reactions: role in the genesis of postischemic no-reflow. Am J Physiol. 1994 Apr;266(4 Pt 2):H1316–H1321. doi: 10.1152/ajpheart.1994.266.4.H1316. [DOI] [PubMed] [Google Scholar]
  26. Karakurum M., Shreeniwas R., Chen J., Pinsky D., Yan S. D., Anderson M., Sunouchi K., Major J., Hamilton T., Kuwabara K. Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J Clin Invest. 1994 Apr;93(4):1564–1570. doi: 10.1172/JCI117135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kintner D. B., Kranner P. W., Gilboe D. D. Cerebral vascular resistance following platelet and leukocyte removal from perfusate. J Cereb Blood Flow Metab. 1986 Feb;6(1):52–58. doi: 10.1038/jcbfm.1986.7. [DOI] [PubMed] [Google Scholar]
  28. Kochanek P. M., Hallenbeck J. M. Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke. 1992 Sep;23(9):1367–1379. doi: 10.1161/01.str.23.9.1367. [DOI] [PubMed] [Google Scholar]
  29. Lin T. N., He Y. Y., Wu G., Khan M., Hsu C. Y. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke. 1993 Jan;24(1):117–121. doi: 10.1161/01.str.24.1.117. [DOI] [PubMed] [Google Scholar]
  30. Lindsberg P. J., Sirén A. L., Feuerstein G. Z., Hallenbeck J. M. Antagonism of neutrophil adherence in the deteriorating stroke model in rabbits. J Neurosurg. 1995 Feb;82(2):269–277. doi: 10.3171/jns.1995.82.2.0269. [DOI] [PubMed] [Google Scholar]
  31. Liszczak T. M., Hedley-Whyte E. T., Adams J. F., Han D. H., Kolluri V. S., Vacanti F. X., Heros R. C., Zervas N. T. Limitations of tetrazolium salts in delineating infarcted brain. Acta Neuropathol. 1984;65(2):150–157. doi: 10.1007/BF00690469. [DOI] [PubMed] [Google Scholar]
  32. Lucchesi B. R., Werns S. W., Fantone J. C. The role of the neutrophil and free radicals in ischemic myocardial injury. J Mol Cell Cardiol. 1989 Dec;21(12):1241–1251. doi: 10.1016/0022-2828(89)90670-6. [DOI] [PubMed] [Google Scholar]
  33. Matsuo Y., Onodera H., Shiga Y., Nakamura M., Ninomiya M., Kihara T., Kogure K. Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat. Effects of neutrophil depletion. Stroke. 1994 Jul;25(7):1469–1475. doi: 10.1161/01.str.25.7.1469. [DOI] [PubMed] [Google Scholar]
  34. Menzies S. A., Hoff J. T., Betz A. L. Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery. 1992 Jul;31(1):100–107. doi: 10.1227/00006123-199207000-00014. [DOI] [PubMed] [Google Scholar]
  35. Mercuri M., Ciuffetti G., Robinson M., Toole J. Blood cell rheology in acute cerebral infarction. Stroke. 1989 Jul;20(7):959–962. doi: 10.1161/01.str.20.7.959. [DOI] [PubMed] [Google Scholar]
  36. Mori E., del Zoppo G. J., Chambers J. D., Copeland B. R., Arfors K. E. Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke. 1992 May;23(5):712–718. doi: 10.1161/01.str.23.5.712. [DOI] [PubMed] [Google Scholar]
  37. NACHLAS M. M., TSOU K. C., DE SOUZA E., CHENG C. S., SELIGMAN A. M. Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem. 1957 Jul;5(4):420–436. doi: 10.1177/5.4.420. [DOI] [PubMed] [Google Scholar]
  38. Obrenovitch T. P., Kumaroo K. K., Hallenbeck J. M. Autoradiographic detections of 111indium-labeled platelets in brain tissue sections. Stroke. 1984 Nov-Dec;15(6):1049–1056. doi: 10.1161/01.str.15.6.1049. [DOI] [PubMed] [Google Scholar]
  39. Okada Y., Copeland B. R., Mori E., Tung M. M., Thomas W. S., del Zoppo G. J. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke. 1994 Jan;25(1):202–211. doi: 10.1161/01.str.25.1.202. [DOI] [PubMed] [Google Scholar]
  40. Pinsky D. J., Naka Y., Chowdhury N. C., Liao H., Oz M. C., Michler R. E., Kubaszewski E., Malinski T., Stern D. M. The nitric oxide/cyclic GMP pathway in organ transplantation: critical role in successful lung preservation. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12086–12090. doi: 10.1073/pnas.91.25.12086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pinsky D. J., Oz M. C., Koga S., Taha Z., Broekman M. J., Marcus A. J., Liao H., Naka Y., Brett J., Cannon P. J. Cardiac preservation is enhanced in a heterotopic rat transplant model by supplementing the nitric oxide pathway. J Clin Invest. 1994 May;93(5):2291–2297. doi: 10.1172/JCI117230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pinsky D., Oz M., Liao H., Morris S., Brett J., Sciacca R., Karakurum M., Van Lookeren Campagne M., Platt J., Nowygrod R. Restoration of the cAMP second messenger pathway enhances cardiac preservation for transplantation in a heterotopic rat model. J Clin Invest. 1993 Dec;92(6):2994–3002. doi: 10.1172/JCI116922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pober J. S. Warner-Lambert/Parke-Davis award lecture. Cytokine-mediated activation of vascular endothelium. Physiology and pathology. Am J Pathol. 1988 Dec;133(3):426–433. [PMC free article] [PubMed] [Google Scholar]
  44. Pozzilli C., Lenzi G. L., Argentino C., Bozzao L., Rasura M., Giubilei F., Fieschi C. Peripheral white blood cell count in cerebral ischemic infarction. Acta Neurol Scand. 1985 May;71(5):396–400. doi: 10.1111/j.1600-0404.1985.tb03219.x. [DOI] [PubMed] [Google Scholar]
  45. Pozzilli C., Lenzi G. L., Argentino C., Carolei A., Rasura M., Signore A., Bozzao L., Pozzilli P. Imaging of leukocytic infiltration in human cerebral infarcts. Stroke. 1985 Mar-Apr;16(2):251–255. doi: 10.1161/01.str.16.2.251. [DOI] [PubMed] [Google Scholar]
  46. Prentice R. L., Szatrowski T. P., Kato H., Mason M. W. Leukocyte counts and cerebrovascular disease. J Chronic Dis. 1982;35(9):703–714. doi: 10.1016/0021-9681(82)90094-7. [DOI] [PubMed] [Google Scholar]
  47. Schott R. J., Natale J. E., Ressler S. W., Burney R. E., D'Alecy L. G. Neutrophil depletion fails to improve neurologic outcome after cardiac arrest in dogs. Ann Emerg Med. 1989 May;18(5):517–522. doi: 10.1016/s0196-0644(89)80836-4. [DOI] [PubMed] [Google Scholar]
  48. Schroeter M., Jander S., Witte O. W., Stoll G. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol. 1994 Dec;55(2):195–203. doi: 10.1016/0165-5728(94)90010-8. [DOI] [PubMed] [Google Scholar]
  49. Sekido N., Mukaida N., Harada A., Nakanishi I., Watanabe Y., Matsushima K. Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature. 1993 Oct 14;365(6447):654–657. doi: 10.1038/365654a0. [DOI] [PubMed] [Google Scholar]
  50. Shreeniwas R., Koga S., Karakurum M., Pinsky D., Kaiser E., Brett J., Wolitzky B. A., Norton C., Plocinski J., Benjamin W. Hypoxia-mediated induction of endothelial cell interleukin-1 alpha. An autocrine mechanism promoting expression of leukocyte adhesion molecules on the vessel surface. J Clin Invest. 1992 Dec;90(6):2333–2339. doi: 10.1172/JCI116122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  52. Sörnäs R., Ostlund H., Müller R. Cerebrospinal fluid cytology after stroke. Arch Neurol. 1972 Jun;26(6):489–501. doi: 10.1001/archneur.1972.00490120029002. [DOI] [PubMed] [Google Scholar]
  53. Takeshima R., Kirsch J. R., Koehler R. C., Gomoll A. W., Traystman R. J. Monoclonal leukocyte antibody does not decrease the injury of transient focal cerebral ischemia in cats. Stroke. 1992 Feb;23(2):247–252. doi: 10.1161/01.str.23.2.247. [DOI] [PubMed] [Google Scholar]
  54. Weyrich A. S., Ma X. Y., Lefer D. J., Albertine K. H., Lefer A. M. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J Clin Invest. 1993 Jun;91(6):2620–2629. doi: 10.1172/JCI116501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Xu H., Gonzalo J. A., St Pierre Y., Williams I. R., Kupper T. S., Cotran R. S., Springer T. A., Gutierrez-Ramos J. C. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med. 1994 Jul 1;180(1):95–109. doi: 10.1084/jem.180.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES