Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):226–231. doi: 10.1172/JCI118395

Transient introduction of a foreign gene into healing rat patellar ligament.

N Nakamura 1, S Horibe 1, N Matsumoto 1, T Tomita 1, T Natsuume 1, Y Kaneda 1, K Shino 1, T Ochi 1
PMCID: PMC507083  PMID: 8550839

Abstract

We investigated the in vivo introduction of a reporter gene into healing rat patellar ligaments using the hemagglutinating virus of Japan (HVJ)-liposome-mediated gene transfer method. The mid-portion of the medial half of the patellar ligament was cut transversely with a scalpel in 14-wk-old male Wistar rats. A HVJ-liposome suspension containing beta-galactosidase (beta-gal) cDNA was injected directly into the injured site and pooled in the fascial pocket covering the injured site 3 d postoperatively. Thereafter, beta-gal-labeled cells were observed in the wound site accounting for 3% of the wound cells on the first day, 2% on the third, 7% on the seventh, 6% on the 14th, 2% on the 28th, and 0.2% on the 56th day after injection. The beta-gal-labeled cells were initially localized in and adjacent to the wound site, but they were observed spreading into the ligament substance away from the wound on the seventh day after injection. On day 28, beta-gal-labeled cells were observed throughout the length of the ligament substance. With double-labeling for marker antigens for monocyte/macrophage (ED-1) and for collagen I aminopropeptide (pN collagen I), it was revealed that fibroblastic (pN collagen I-positive) cells accounted for 63% and monocyte/macrophage lineage cells for 32% of the beta-gal-labeled cells in the day 7 wound. On day 28, they formed 58 and 35% of the beta-gal-labeled cells in the wound, respectively. Thus, we succeeded in introducing the beta-gal gene into healing rat patellar ligament. Moreover, labeling of the transfected cells made it possible to identify a biological event, namely that the cells in and around the wound site infiltrate into the uninjured ligament substance and come to populate the whole length of the ligament substance as repair progresses. These results suggest that ligament healing may involve not only the repair of the wound site itself but also extensive cellular infiltration of ligament substance adjacent to the wound.

Full Text

The Full Text of this article is available as a PDF (468.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broadley K. N., Aquino A. M., Woodward S. C., Buckley-Sturrock A., Sato Y., Rifkin D. B., Davidson J. M. Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair. Lab Invest. 1989 Nov;61(5):571–575. [PubMed] [Google Scholar]
  2. Casadaban M. J., Martinez-Arias A., Shapira S. K., Chou J. Beta-galactosidase gene fusions for analyzing gene expression in escherichia coli and yeast. Methods Enzymol. 1983;100:293–308. doi: 10.1016/0076-6879(83)00063-4. [DOI] [PubMed] [Google Scholar]
  3. Deuel T. F., Kawahara R. S., Mustoe T. A., Pierce A. F. Growth factors and wound healing: platelet-derived growth factor as a model cytokine. Annu Rev Med. 1991;42:567–584. doi: 10.1146/annurev.me.42.020191.003031. [DOI] [PubMed] [Google Scholar]
  4. Dijkstra C. D., Döpp E. A., Joling P., Kraal G. The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology. 1985 Mar;54(3):589–599. [PMC free article] [PubMed] [Google Scholar]
  5. Frank C., Schachar N., Dittrich D. Natural history of healing in the repaired medial collateral ligament. J Orthop Res. 1983;1(2):179–188. doi: 10.1002/jor.1100010209. [DOI] [PubMed] [Google Scholar]
  6. Frank C., Woo S. L., Amiel D., Harwood F., Gomez M., Akeson W. Medial collateral ligament healing. A multidisciplinary assessment in rabbits. Am J Sports Med. 1983 Nov-Dec;11(6):379–389. doi: 10.1177/036354658301100602. [DOI] [PubMed] [Google Scholar]
  7. Isaka Y., Fujiwara Y., Ueda N., Kaneda Y., Kamada T., Imai E. Glomerulosclerosis induced by in vivo transfection of transforming growth factor-beta or platelet-derived growth factor gene into the rat kidney. J Clin Invest. 1993 Dec;92(6):2597–2601. doi: 10.1172/JCI116874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaneda Y., Iwai K., Uchida T. Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science. 1989 Jan 20;243(4889):375–378. doi: 10.1126/science.2911748. [DOI] [PubMed] [Google Scholar]
  9. Kaneda Y., Iwai K., Uchida T. Introduction and expression of the human insulin gene in adult rat liver. J Biol Chem. 1989 Jul 25;264(21):12126–12129. [PubMed] [Google Scholar]
  10. Kaneda Y., Uchida T., Kim J., Ishiura M., Okada Y. The improved efficient method for introducing macromolecules into cells using HVJ (Sendai virus) liposomes with gangliosides. Exp Cell Res. 1987 Nov;173(1):56–69. doi: 10.1016/0014-4827(87)90331-4. [DOI] [PubMed] [Google Scholar]
  11. Kato K., Nakanishi M., Kaneda Y., Uchida T., Okada Y. Expression of hepatitis B virus surface antigen in adult rat liver. Co-introduction of DNA and nuclear protein by a simplified liposome method. J Biol Chem. 1991 Feb 25;266(6):3361–3364. [PubMed] [Google Scholar]
  12. Kost T. A., Theodorakis N., Hughes S. H. The nucleotide sequence of the chick cytoplasmic beta-actin gene. Nucleic Acids Res. 1983 Dec 10;11(23):8287–8301. doi: 10.1093/nar/11.23.8287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morishita R., Gibbons G. H., Kaneda Y., Ogihara T., Dzau V. J. Novel and effective gene transfer technique for study of vascular renin angiotensin system. J Clin Invest. 1993 Jun;91(6):2580–2585. doi: 10.1172/JCI116496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nakanishi M., Uchida T., Sugawa H., Ishiura M., Okada Y. Efficient introduction of contents of liposomes into cells using HVJ (Sendai virus). Exp Cell Res. 1985 Aug;159(2):399–409. doi: 10.1016/s0014-4827(85)80013-6. [DOI] [PubMed] [Google Scholar]
  15. Pierce G. F., Mustoe T. A., Lingelbach J., Masakowski V. R., Gramates P., Deuel T. F. Transforming growth factor beta reverses the glucocorticoid-induced wound-healing deficit in rats: possible regulation in macrophages by platelet-derived growth factor. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2229–2233. doi: 10.1073/pnas.86.7.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pierce G. F., Mustoe T. A., Lingelbach J., Masakowski V. R., Griffin G. L., Senior R. M., Deuel T. F. Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms. J Cell Biol. 1989 Jul;109(1):429–440. doi: 10.1083/jcb.109.1.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pierce G. F., Tarpley J. E., Yanagihara D., Mustoe T. A., Fox G. M., Thomason A. Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair. Am J Pathol. 1992 Jun;140(6):1375–1388. [PMC free article] [PubMed] [Google Scholar]
  18. Pierce G. F., Vande Berg J., Rudolph R., Tarpley J., Mustoe T. A. Platelet-derived growth factor-BB and transforming growth factor beta 1 selectively modulate glycosaminoglycans, collagen, and myofibroblasts in excisional wounds. Am J Pathol. 1991 Mar;138(3):629–646. [PMC free article] [PubMed] [Google Scholar]
  19. Tomita N., Higaki J., Morishita R., Kato K., Mikami H., Kaneda Y., Ogihara T. Direct in vivo gene introduction into rat kidney. Biochem Biophys Res Commun. 1992 Jul 15;186(1):129–134. doi: 10.1016/s0006-291x(05)80784-3. [DOI] [PubMed] [Google Scholar]
  20. Tsuboi R., Rifkin D. B. Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice. J Exp Med. 1990 Jul 1;172(1):245–251. doi: 10.1084/jem.172.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zeitz M., Ruiz-Torres A., Merker H. J. Collagen metabolism in granulating wounds of rat skin. Arch Dermatol Res. 1978 Nov 10;263(2):207–214. doi: 10.1007/BF00446442. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES