Abstract
To determine the respective roles of insulin and glucagon for hepatic glycogen synthesis and turnover, hyperglycemic clamps were performed with somatostatin [0.1 micrograms/(kg.min)] in healthy young men under conditions of: (I) basal fasting) portal vein insulinemia-hypoglucagonemia, (II) basal portal vein insulinemia-basal glucagonemia, and (III) basal peripheral insulinemia-hypoglucagonemia. Synthetic rates, pathway (direct versus indirect) contributions, and percent turnover of hepatic glycogen were assessed by in vivo 13C nuclear magnetic resonance spectroscopy during [1-13C]glucose infusion followed by a natural abundance glucose chase in conjunction with acetaminophen to noninvasively sample the hepatic UDP-glucose pool. In the presence of hyperglycemia (10.4 +/- 0.1 mM) and basal portal vein insulinemia (192 +/- 6 pM), suppression of glucagon secretion (plasma glucagon, I:31 +/- 4, II: 63 +/- 8 pg/ml) doubled the hepatic accumulation of glycogen (Vsyn) compared with conditions of basal glucagonemia [I: 0.40 +/- 0.06, II: 0.19 +/- 0.03 mumol/(liter.min): P < 0.0025]. Glycogen turnover was markedly reduced (I: 19 +/- 7%, II: 69 +/- 12%; P < 0.005), so that net rate of glycogen synthesis increased approximately fivefold (P < 0.001) by inhibition of glucagon secretion. The relative contribution of gluconeogenesis (indirect pathway) to glycogen synthesis was lower during hypoglucagonemia (42 +/- 6%) than during basal glucagonemia (54 +/- 5%; P < 0.005). Under conditions of basal peripheral insulinemia (54 +/- 2 pM) and hypoglucagonemia (III) there was negligible hepatic glycogen synthesis and turnover. In conclusion, small changes in portal vein concentrations of insulin and glucagon independently affect hepatic glycogen synthesis and turnover. Inhibition of glucagon secretion under conditions of hyperglycemia and basal concentrations of insulin results in: (a) twofold increase in rate of hepatic glycogen synthesis, (b) reduction of glycogen turnover by approximately 73%, and (c) augmented percent contribution of the direct pathway to glycogen synthesis compared with conditions of basal glucagonemia.
Full Text
The Full Text of this article is available as a PDF (212.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blackard W. G., Nelson N. C. Portal and peripheral vein immunoreactive insulin concentrations before and after glucose infusion. Diabetes. 1970 May;19(5):302–306. doi: 10.2337/diab.19.5.302. [DOI] [PubMed] [Google Scholar]
- Chiasson J. L., Liljenquist J. E., Sinclair-Smith B. C., Lacy W. W. Gluconeogenesis from alanine in normal postabsorptive man. Intrahepatic stimulatory effect of glucagon. Diabetes. 1975 Jun;24(6):574–584. doi: 10.2337/diab.24.6.574. [DOI] [PubMed] [Google Scholar]
- Christensen S. E., Hansen A. P., Weeke J., Lundbaek K. 24-hour studies of the effects of somatostatin on the levels of plasma growth hormone, glucagon, and glucose in normal subjects and juvenile diabetics. Diabetes. 1978 Mar;27(3):300–306. doi: 10.2337/diab.27.3.300. [DOI] [PubMed] [Google Scholar]
- Cline G. W., Rothman D. L., Magnusson I., Katz L. D., Shulman G. I. 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus. J Clin Invest. 1994 Dec;94(6):2369–2376. doi: 10.1172/JCI117602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeFronzo R. A., Ferrannini E., Hendler R., Felig P., Wahren J. Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia in man. Diabetes. 1983 Jan;32(1):35–45. doi: 10.2337/diab.32.1.35. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
- Dimitriadis G., Tessari P., Gerich J. Effects of a long-acting somatostatin analogue on postprandial hyperglycemia in insulin-dependent diabetes mellitus. Metabolism. 1983 Oct;32(10):987–992. doi: 10.1016/0026-0495(83)90140-3. [DOI] [PubMed] [Google Scholar]
- Dinneen S., Alzaid A., Miles J., Rizza R. Metabolic effects of the nocturnal rise in cortisol on carbohydrate metabolism in normal humans. J Clin Invest. 1993 Nov;92(5):2283–2290. doi: 10.1172/JCI116832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinneen S., Alzaid A., Turk D., Rizza R. Failure of glucagon suppression contributes to postprandial hyperglycaemia in IDDM. Diabetologia. 1995 Mar;38(3):337–343. doi: 10.1007/BF00400639. [DOI] [PubMed] [Google Scholar]
- Exton J. H., Park C. R. Control of gluconeogenesis in liver. I. General features of gluconeogenesis in the perfused livers of rats. J Biol Chem. 1967 Jun 10;242(11):2622–2636. [PubMed] [Google Scholar]
- Gerich J. E., Lorenzi M., Karam J. H., Schneider V., Forsham P. H. Abnormal pancreatic glucagon secretion and postprandial hyperglycemia in diabetes mellitus. JAMA. 1975 Oct 13;234(2):159–155. [PubMed] [Google Scholar]
- Gerich J. E., Lorenzi M., Schneider V., Karam J. H., Rivier J., Guillemin R., Forsham P. H. Effects of somatostatin on plasma glucose and glucagon levels in human diabetes mellitus. Pathophysiologic and therapeutic implications. N Engl J Med. 1974 Sep 12;291(11):544–547. doi: 10.1056/NEJM197409122911102. [DOI] [PubMed] [Google Scholar]
- Gerich J. E., Tsalikian E., Lorenzi M., Schneider V., Bohannon N. V., Gustafson G., Karam J. H. Normalization of fasting hyperglucagonemia and excessive glucagon responses to intravenous arginine in human diabetes mellitus by prolonged infusion of insulin. J Clin Endocrinol Metab. 1975 Dec;41(06):1178–1180. doi: 10.1210/jcem-41-6-1178. [DOI] [PubMed] [Google Scholar]
- Granner D. K., O'Brien R. M. Molecular physiology and genetics of NIDDM. Importance of metabolic staging. Diabetes Care. 1992 Mar;15(3):369–395. doi: 10.2337/diacare.15.3.369. [DOI] [PubMed] [Google Scholar]
- Groen A. K., Vervoorn R. C., Van der Meer R., Tager J. M. Control of gluconeogenesis in rat liver cells. I. Kinetics of the individual enzymes and the effect of glucagon. J Biol Chem. 1983 Dec 10;258(23):14346–14353. [PubMed] [Google Scholar]
- Grossman L. D., Shumak S. L., George S. R., Singer W., Zinman B. The effects of SMS 201-995 (sandostatin) on metabolic profiles in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1989 Jan;68(1):63–67. doi: 10.1210/jcem-68-1-63. [DOI] [PubMed] [Google Scholar]
- Hers H. G. The control of glycogen metabolism in the liver. Annu Rev Biochem. 1976;45:167–189. doi: 10.1146/annurev.bi.45.070176.001123. [DOI] [PubMed] [Google Scholar]
- Horwitz D. L., Starr J. I., Mako M. E., Blackard W. G., Rubenstein A. H. Proinsulin, insulin, and C-peptide concentrations in human portal and peripheral blood. J Clin Invest. 1975 Jun;55(6):1278–1283. doi: 10.1172/JCI108047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang J. H., Perseghin G., Rothman D. L., Cline G. W., Magnusson I., Petersen K. F., Shulman G. I. Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J Clin Invest. 1995 Feb;95(2):783–787. doi: 10.1172/JCI117727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaspan J. B., Ruddick J., Rayfield E. Transhepatic glucagon gradients in man: evidence for glucagon extraction by human liver. J Clin Endocrinol Metab. 1984 Feb;58(2):287–292. doi: 10.1210/jcem-58-2-287. [DOI] [PubMed] [Google Scholar]
- Katz J., Golden S., Wals P. A. Stimulation of hepatic glycogen synthesis by amino acids. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3433–3437. doi: 10.1073/pnas.73.10.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolterman O. G., Insel J., Saekow M., Olefsky J. M. Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects. J Clin Invest. 1980 Jun;65(6):1272–1284. doi: 10.1172/JCI109790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liljenquist J. E., Bloomgarden Z. T., Cherrington A. D., Perry J. M., Rabin D. Possible mechanism by which somatostatin-induced glucagon suppression improves glucose tolerance during insulinopaenia in man. Diabetologia. 1979 Sep;17(3):139–143. doi: 10.1007/BF01219739. [DOI] [PubMed] [Google Scholar]
- Liljenquist J. E., Mueller G. L., Cherrington A. D., Perry J. M., Rabinowitz D. Hyperglycemia per se (insulin and glucagon withdrawn) can inhibit hepatic glucose production in man. J Clin Endocrinol Metab. 1979 Jan;48(1):171–175. doi: 10.1210/jcem-48-1-171. [DOI] [PubMed] [Google Scholar]
- Magnusson I., Rothman D. L., Jucker B., Cline G. W., Shulman R. G., Shulman G. I. Liver glycogen turnover in fed and fasted humans. Am J Physiol. 1994 May;266(5 Pt 1):E796–E803. doi: 10.1152/ajpendo.1994.266.5.E796. [DOI] [PubMed] [Google Scholar]
- Miles J., Glasscock R., Aikens J., Gerich J., Haymond M. A microfluorometric method for the determination of free fatty acids in plasma. J Lipid Res. 1983 Jan;24(1):96–99. [PubMed] [Google Scholar]
- Moore M. C., Cherrington A. D., Cline G., Pagliassotti M. J., Jones E. M., Neal D. W., Badet C., Shulman G. I. Sources of carbon for hepatic glycogen synthesis in the conscious dog. J Clin Invest. 1991 Aug;88(2):578–587. doi: 10.1172/JCI115342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nilsson L. H., Hultman E. Liver and muscle glycogen in man after glucose and fructose infusion. Scand J Clin Lab Invest. 1974 Feb;33(1):5–10. doi: 10.3109/00365517409114190. [DOI] [PubMed] [Google Scholar]
- Osei K., O'Dorisio T. M., Malarkey W. B., Craig E. L., Cataland S. Metabolic effects of long-acting somatostatin analogue (sandostatin) in type I diabetic patients on conventional therapy. Diabetes. 1989 Jun;38(6):704–709. doi: 10.2337/diab.38.6.704. [DOI] [PubMed] [Google Scholar]
- Plewe G., Nölken G., Krause U., del Pozo E., Beyer J. Somatostatin analogue SMS 201-995 in type I diabetes mellitus. Initial experience after repeated administration. Scand J Gastroenterol Suppl. 1986;119:166–169. doi: 10.3109/00365528609087446. [DOI] [PubMed] [Google Scholar]
- Raskin P., Unger R. H. Effect of insulin therapy on the profiles of plasma immunoreactive glucagon in juvenile-type and adult-type diabetics. Diabetes. 1978 Apr;27(4):411–419. doi: 10.2337/diab.27.4.411. [DOI] [PubMed] [Google Scholar]
- Rios M. S., Navascues I., Saban J., Ordoñez A., Sevilla F., Del Pozo E. Somatostatin analog SMS 201-995 and insulin needs in insulin-dependent diabetic patients studied by means of an artificial pancreas. J Clin Endocrinol Metab. 1986 Nov;63(5):1071–1074. doi: 10.1210/jcem-63-5-1071. [DOI] [PubMed] [Google Scholar]
- Rizza R. A., Mandarino L. J., Gerich J. E. Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol. 1981 Jun;240(6):E630–E639. doi: 10.1152/ajpendo.1981.240.6.E630. [DOI] [PubMed] [Google Scholar]
- Rothman D. L., Magnusson I., Katz L. D., Shulman R. G., Shulman G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991 Oct 25;254(5031):573–576. doi: 10.1126/science.1948033. [DOI] [PubMed] [Google Scholar]
- Saccà L., Cicala M., Trimarco B., Ungaro B., Vigorito C. Differential effects of insulin on splanchnic and peripheral glucose disposal after an intravenous glucose load in man. J Clin Invest. 1982 Jul;70(1):117–126. doi: 10.1172/JCI110583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shulman G. I., Cline G., Schumann W. C., Chandramouli V., Kumaran K., Landau B. R. Quantitative comparison of pathways of hepatic glycogen repletion in fed and fasted humans. Am J Physiol. 1990 Sep;259(3 Pt 1):E335–E341. doi: 10.1152/ajpendo.1990.259.3.E335. [DOI] [PubMed] [Google Scholar]
- Shulman G. I., Landau B. R. Pathways of glycogen repletion. Physiol Rev. 1992 Oct;72(4):1019–1035. doi: 10.1152/physrev.1992.72.4.1019. [DOI] [PubMed] [Google Scholar]
- Shulman G. I., Liljenquist J. E., Williams P. E., Lacy W. W., Cherrington A. D. Glucose disposal during insulinopenia in somatostatin-treated dogs. The roles of glucose and glucagon. J Clin Invest. 1978 Aug;62(2):487–491. doi: 10.1172/JCI109150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shulman G. I., Rothman D. L., Jue T., Stein P., DeFronzo R. A., Shulman R. G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990 Jan 25;322(4):223–228. doi: 10.1056/NEJM199001253220403. [DOI] [PubMed] [Google Scholar]
- Spinas G. A., Bock A., Keller U. Reduced postprandial hyperglycemia after subcutaneous injection of a somatostatin-analogue (SMS 201-995) in insulin-dependent diabetes mellitus. Diabetes Care. 1985 Sep-Oct;8(5):429–435. doi: 10.2337/diacare.8.5.429. [DOI] [PubMed] [Google Scholar]
- Stevenson R. W., Steiner K. E., Davis M. A., Hendrick G. K., Williams P. E., Lacy W. W., Brown L., Donahue P., Lacy D. B., Cherrington A. D. Similar dose responsiveness of hepatic glycogenolysis and gluconeogenesis to glucagon in vivo. Diabetes. 1987 Mar;36(3):382–389. doi: 10.2337/diab.36.3.382. [DOI] [PubMed] [Google Scholar]
- Unger R. H., Orci L. The essential role of glucagon in the pathogenesis of diabetes mellitus. Lancet. 1975 Jan 4;1(7897):14–16. doi: 10.1016/s0140-6736(75)92375-2. [DOI] [PubMed] [Google Scholar]
- Wahren J. Influence of somatostatin on carbohydrate disposal and absorption in diabetes mellitus. Lancet. 1976 Dec 4;2(7997):1213–1216. doi: 10.1016/s0140-6736(76)91142-9. [DOI] [PubMed] [Google Scholar]
- Wajngot A., Chandramouli V., Schumann W. C., Kumaran K., Efendić S., Landau B. R. Testing of the assumptions made in estimating the extent of futile cycling. Am J Physiol. 1989 May;256(5 Pt 1):E668–E675. doi: 10.1152/ajpendo.1989.256.5.E668. [DOI] [PubMed] [Google Scholar]