Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Feb 1;97(3):656–663. doi: 10.1172/JCI118462

Regulation of calcium channel expression in neonatal myocytes by catecholamines.

T Maki 1, E J Gruver 1, A J Davidoff 1, N Izzo 1, D Toupin 1, W Colucci 1, A R Marks 1, J D Marsh 1
PMCID: PMC507101  PMID: 8609220

Abstract

Expression of the dihydropyridine (DHP) receptor (alpha 1 subunit of L-type calcium channel) in heart is regulated by differentiation and innervation and is altered in congestive heart failure. We examined the transmembrane signaling pathways by which norepinephrine regulates DHP receptor expression in cultured neonatal rat ventricular myocytes. Using a 1.3-kb rat cardiac DHP receptor probe, and Northern analysis quantified by laser densitometry, we found that norepinephrine exposure produced a 2.2-fold increase in DHP receptor mRNA levels at 2 h followed by a decline to 50% of control at 4-48 h (P < 0.02). The alpha-adrenergic agonist phenylephrine and a phorbol ester produced a decline in mRNA levels (8-48 h). The beta-adrenergic agonist isoproterenol and 8-bromo-cAMP produced a transient increase in mRNA levels. After 24 h of exposure to isoproterenol, 3H-(+)PN200-110 binding sites increased from 410 +/- 8 to 539 +/- 39 fmol/mg (P < 0.05). The number of functional calcium channels, estimated by whole-cell voltage clamp experiments, was also increased after 24 h of exposure to isoproterenol. Peak current density (recordings performed in absence of isoproterenol) increased from -10.8 +/- 0.8 (n = 23) to -13.9 +/- 1.0 pA/pF (n = 27) (P < 0.01). Other characteristics of the calcium current (voltage for peak current, activation, and inactivation) were unchanged. Exposure for 48 h to phenylephrine produced a significant decline in peak current density (P < 0.01). We conclude that beta -adrenergic transmembrane signaling increases DHP receptor mRNA and number of functional calcium channels and that alpha - adrenergic transmembrane signaling produces a reciprocal effect. Regulation of cardiac calcium channel expression by adrenergic pathways may have physiological and pathophysiological importance.

Full Text

The Full Text of this article is available as a PDF (230.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiba S., Creazzo T. L. Comparison of the number of dihydropyridine receptors with the number of functional L-type calcium channels in embryonic heart. Circ Res. 1993 Feb;72(2):396–402. doi: 10.1161/01.res.72.2.396. [DOI] [PubMed] [Google Scholar]
  2. Balke C. W., Wier W. G. Modulation of L-type calcium channels by sodium ions. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4417–4421. doi: 10.1073/pnas.89.10.4417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bean B. P. Whole-cell recording of calcium channel currents. Methods Enzymol. 1992;207:181–193. doi: 10.1016/0076-6879(92)07013-e. [DOI] [PubMed] [Google Scholar]
  4. Brillantes A. M., Bezprozvannaya S., Marks A. R. Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling. Circ Res. 1994 Sep;75(3):503–510. doi: 10.1161/01.res.75.3.503. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Cohn J. N., Levine T. B., Olivari M. T., Garberg V., Lura D., Francis G. S., Simon A. B., Rector T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984 Sep 27;311(13):819–823. doi: 10.1056/NEJM198409273111303. [DOI] [PubMed] [Google Scholar]
  7. Collins S., Caron M. G., Lefkowitz R. J. Regulation of adrenergic receptor responsiveness through modulation of receptor gene expression. Annu Rev Physiol. 1991;53:497–508. doi: 10.1146/annurev.ph.53.030191.002433. [DOI] [PubMed] [Google Scholar]
  8. Cotecchia S., Schwinn D. A., Randall R. R., Lefkowitz R. J., Caron M. G., Kobilka B. K. Molecular cloning and expression of the cDNA for the hamster alpha 1-adrenergic receptor. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7159–7163. doi: 10.1073/pnas.85.19.7159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Diebold R. J., Koch W. J., Ellinor P. T., Wang J. J., Muthuchamy M., Wieczorek D. F., Schwartz A. Mutually exclusive exon splicing of the cardiac calcium channel alpha 1 subunit gene generates developmentally regulated isoforms in the rat heart. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1497–1501. doi: 10.1073/pnas.89.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ellingsen O., Davidoff A. J., Prasad S. K., Berger H. J., Springhorn J. P., Marsh J. D., Kelly R. A., Smith T. W. Adult rat ventricular myocytes cultured in defined medium: phenotype and electromechanical function. Am J Physiol. 1993 Aug;265(2 Pt 2):H747–H754. doi: 10.1152/ajpheart.1993.265.2.H747. [DOI] [PubMed] [Google Scholar]
  11. Ferrante J., Triggle D. J. Drug- and disease-induced regulation of voltage-dependent calcium channels. Pharmacol Rev. 1990 Mar;42(1):29–44. [PubMed] [Google Scholar]
  12. Gengo P. J., Bowling N., Wyss V. L., Hayes J. S. Effects of prolonged phenylephrine infusion on cardiac adrenoceptors and calcium channels. J Pharmacol Exp Ther. 1988 Jan;244(1):100–105. [PubMed] [Google Scholar]
  13. Gillo B., Ma Y. S., Marks A. R. Calcium influx in induced differentiation of murine erythroleukemia cells. Blood. 1993 Feb 1;81(3):783–792. [PubMed] [Google Scholar]
  14. Izzo N. J., Jr, Seidman C. E., Collins S., Colucci W. S. Alpha 1-adrenergic receptor mRNA level is regulated by norepinephrine in rabbit aortic smooth muscle cells. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6268–6271. doi: 10.1073/pnas.87.16.6268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Katzka D. A., Cox R., Davidoff A. J., Morad M. Permeation of divalent cations through the Ca2+ channel of rabbit portal vein myocytes. Am J Physiol. 1992 Feb;262(2 Pt 2):H326–H330. doi: 10.1152/ajpheart.1992.262.2.H326. [DOI] [PubMed] [Google Scholar]
  16. Keung E. C., Karliner J. S. Complex regulation of calcium current in cardiac cells. Dependence on a pertussis toxin-sensitive substrate, adenosine triphosphate, and an alpha 1-adrenoceptor. J Clin Invest. 1990 Mar;85(3):950–954. doi: 10.1172/JCI114524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Langer G. A., Brady A. J., Tan S. T., Serena D. Correlation of the glycoside response, the force staircase, and the action potential configuration in the neonatal rat heart. Circ Res. 1975 Jun;36(6):744–752. doi: 10.1161/01.res.36.6.744. [DOI] [PubMed] [Google Scholar]
  18. Lee R. T., Bloch K. D., Pfeffer J. M., Pfeffer M. A., Neer E. J., Seidman C. E. Atrial natriuretic factor gene expression in ventricles of rats with spontaneous biventricular hypertrophy. J Clin Invest. 1988 Feb;81(2):431–434. doi: 10.1172/JCI113337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Libby P. Long-term culture of contractile mammalian heart cells in a defined serum-free medium that limits non-muscle cell proliferation. J Mol Cell Cardiol. 1984 Sep;16(9):803–811. doi: 10.1016/s0022-2828(84)80004-8. [DOI] [PubMed] [Google Scholar]
  20. Ma Y., Kobrinsky E., Marks A. R. Cloning and expression of a novel truncated calcium channel from non-excitable cells. J Biol Chem. 1995 Jan 6;270(1):483–493. doi: 10.1074/jbc.270.1.483. [DOI] [PubMed] [Google Scholar]
  21. Marsh J. D., Allen P. D. Developmental regulation of cardiac calcium channels and contractile sensitivity to [Ca]o. Am J Physiol. 1989 Jan;256(1 Pt 2):H179–H185. doi: 10.1152/ajpheart.1989.256.1.H179. [DOI] [PubMed] [Google Scholar]
  22. Marsh J. D. Coregulation of calcium channels and beta-adrenergic receptors in cultured chick embryo ventricular cells. J Clin Invest. 1989 Sep;84(3):817–823. doi: 10.1172/JCI114241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marsh J. D., Lachance D., Kim D. Mechanisms of beta-adrenergic receptor regulation in cultured chick heart cells. Role of cytoskeleton function and protein synthesis. Circ Res. 1985 Jul;57(1):171–181. doi: 10.1161/01.res.57.1.171. [DOI] [PubMed] [Google Scholar]
  24. Marsh J. D., Smith T. W. Receptors for beta-adrenergic agonists in cultured chick ventricular cells. Relationship between agonist binding and physiologic effect. Mol Pharmacol. 1985 Jan;27(1):10–18. [PubMed] [Google Scholar]
  25. Mercadier J. J., Lompré A. M., Duc P., Boheler K. R., Fraysse J. B., Wisnewsky C., Allen P. D., Komajda M., Schwartz K. Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest. 1990 Jan;85(1):305–309. doi: 10.1172/JCI114429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mikami A., Imoto K., Tanabe T., Niidome T., Mori Y., Takeshima H., Narumiya S., Numa S. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature. 1989 Jul 20;340(6230):230–233. doi: 10.1038/340230a0. [DOI] [PubMed] [Google Scholar]
  27. Mohamed S. N., Holmes R., Hartzell C. R. A serum-free, chemically-defined medium for function and growth of primary neonatal rat heart cell cultures. In Vitro. 1983 Jun;19(6):471–478. doi: 10.1007/BF02619594. [DOI] [PubMed] [Google Scholar]
  28. Morris G. M., Hadcock J. R., Malbon C. C. Cross-regulation between G-protein-coupled receptors. Activation of beta 2-adrenergic receptors increases alpha 1-adrenergic receptor mRNA levels. J Biol Chem. 1991 Feb 5;266(4):2233–2238. [PubMed] [Google Scholar]
  29. Ogawa S., Barnett J. V., Sen L., Galper J. B., Smith T. W., Marsh J. D. Direct contact between sympathetic neurons and rat cardiac myocytes in vitro increases expression of functional calcium channels. J Clin Invest. 1992 Apr;89(4):1085–1093. doi: 10.1172/JCI115688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Perez-Reyes E., Kim H. S., Lacerda A. E., Horne W., Wei X. Y., Rampe D., Campbell K. P., Brown A. M., Birnbaumer L. Induction of calcium currents by the expression of the alpha 1-subunit of the dihydropyridine receptor from skeletal muscle. Nature. 1989 Jul 20;340(6230):233–236. doi: 10.1038/340233a0. [DOI] [PubMed] [Google Scholar]
  31. Rasmussen R. P., Minobe W., Bristow M. R. Calcium antagonist binding sites in failing and nonfailing human ventricular myocardium. Biochem Pharmacol. 1990 Feb 15;39(4):691–696. doi: 10.1016/0006-2952(90)90147-d. [DOI] [PubMed] [Google Scholar]
  32. Singer D., Biel M., Lotan I., Flockerzi V., Hofmann F., Dascal N. The roles of the subunits in the function of the calcium channel. Science. 1991 Sep 27;253(5027):1553–1557. doi: 10.1126/science.1716787. [DOI] [PubMed] [Google Scholar]
  33. Sperelakis N., Shigenobu K. Changes in membrane properties of chick embryonic hearts during development. J Gen Physiol. 1972 Oct;60(4):430–453. doi: 10.1085/jgp.60.4.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takahashi T., Allen P. D., Lacro R. V., Marks A. R., Dennis A. R., Schoen F. J., Grossman W., Marsh J. D., Izumo S. Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. J Clin Invest. 1992 Sep;90(3):927–935. doi: 10.1172/JCI115969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tohse N., Masuda H., Sperelakis N. Novel isoform of Ca2+ channel in rat fetal cardiomyocytes. J Physiol. 1992;451:295–306. doi: 10.1113/jphysiol.1992.sp019165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wei X. Y., Perez-Reyes E., Lacerda A. E., Schuster G., Brown A. M., Birnbaumer L. Heterologous regulation of the cardiac Ca2+ channel alpha 1 subunit by skeletal muscle beta and gamma subunits. Implications for the structure of cardiac L-type Ca2+ channels. J Biol Chem. 1991 Nov 15;266(32):21943–21947. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES