Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Feb 1;97(3):664–671. doi: 10.1172/JCI118463

Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport.

H G Folkesson 1, M A Matthay 1, A Frigeri 1, A S Verkman 1
PMCID: PMC507102  PMID: 8609221

Abstract

Water movement across the airway epithelium is important for regulation of the volume and composition of airspace fluid. A novel approach is reported here to measure osmotic and diffusional water permeability in intact airways. Small airways (100-200 microns diameter, 1-2 mm length) from guinea pig lung were microdissected and perfused in vitro using concentric glass holding and perfusion pipettes. For measurement of osmotic water permeability (Pf), the airway lumen was perfused wit PBS (300 mOsM) containing a membrane impermeable fluorophore, fluorescein sulfonate (FS), and the airway was bathed in solutions of specified osmolalities. Pf determination was based on the changes in FS fluorescence at the distal end of the airway resulting from transepithelial water transport. Pf was 4-5 x 10(-3) cm/s at 23 degrees C and independent of lumen flow rate (10-100 nl/min) and the magnitude and direction of the osmotic gradient (bath osmolality 50-600 mOsM). Temperature dependence measurements gave an activation energy of 4.4 kcal/mol (15-37 degrees C). Pf was not altered by 0.3 mM HgCl2 or 50 microM forskolin, but was increased to 31 x 10(-3) cm/s by 100 micrograms/ml amphotericin B, indicating that osmosis is not limited by unstirred layers. Diffusional water permeability (Pd) was measured by H2O/D2O (deuterium oxide) exchange using the H2O/D2O-sensitive fluorescent probe aminonapthelane trisulfonic acid in the lumen. Measured Pd was 3-6 x 10(-6) cm/s at 23 degrees C, indicating significant restriction to water diffusion by unstirred layers. Antibody localization of water channels showed strong expression of the mercurial-insensitive water channel (AQP-4) at the basolateral membrane of airway epithelial cells. These results provide functional evidence that water movement across the distal airway epithelium is mediated by water channels.

Full Text

The Full Text of this article is available as a PDF (274.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agre P., Preston G. M., Smith B. L., Jung J. S., Raina S., Moon C., Guggino W. B., Nielsen S. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol. 1993 Oct;265(4 Pt 2):F463–F476. doi: 10.1152/ajprenal.1993.265.4.F463. [DOI] [PubMed] [Google Scholar]
  2. Al-Bazzaz F. J. Regulation of Na and Cl transport in sheep distal airways. Am J Physiol. 1994 Aug;267(2 Pt 1):L193–L198. doi: 10.1152/ajplung.1994.267.2.L193. [DOI] [PubMed] [Google Scholar]
  3. Baile E. M., Dahlby R. W., Wiggs B. R., Parsons G. H., Paré P. D. Effect of cold and warm dry air hyperventilation on canine airway blood flow. J Appl Physiol (1985) 1987 Feb;62(2):526–532. doi: 10.1152/jappl.1987.62.2.526. [DOI] [PubMed] [Google Scholar]
  4. Ballard S. T., Schepens S. M., Falcone J. C., Meininger G. A., Taylor A. E. Regional bioelectric properties of porcine airway epithelium. J Appl Physiol (1985) 1992 Nov;73(5):2021–2027. doi: 10.1152/jappl.1992.73.5.2021. [DOI] [PubMed] [Google Scholar]
  5. Berthiaume Y., Staub N. C., Matthay M. A. Beta-adrenergic agonists increase lung liquid clearance in anesthetized sheep. J Clin Invest. 1987 Feb;79(2):335–343. doi: 10.1172/JCI112817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boucher R. C. Human airway ion transport. Part one. Am J Respir Crit Care Med. 1994 Jul;150(1):271–281. doi: 10.1164/ajrccm.150.1.8025763. [DOI] [PubMed] [Google Scholar]
  7. Echevarria M., Windhager E. E., Tate S. S., Frindt G. Cloning and expression of AQP3, a water channel from the medullary collecting duct of rat kidney. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10997–11001. doi: 10.1073/pnas.91.23.10997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Effros R. M., Mason G. R., Hukkanen J., Silverman P. New evidence for active sodium transport from fluid-filled rat lungs. J Appl Physiol (1985) 1989 Feb;66(2):906–919. doi: 10.1152/jappl.1989.66.2.906. [DOI] [PubMed] [Google Scholar]
  9. Folkesson H. G., Matthay M. A., Hasegawa H., Kheradmand F., Verkman A. S. Transcellular water transport in lung alveolar epithelium through mercury-sensitive water channels. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4970–4974. doi: 10.1073/pnas.91.11.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frigeri A., Gropper M. A., Turck C. W., Verkman A. S. Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4328–4331. doi: 10.1073/pnas.92.10.4328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frigeri A., Gropper M. A., Umenishi F., Kawashima M., Brown D., Verkman A. S. Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J Cell Sci. 1995 Sep;108(Pt 9):2993–3002. doi: 10.1242/jcs.108.9.2993. [DOI] [PubMed] [Google Scholar]
  12. Fushimi K., Uchida S., Hara Y., Hirata Y., Marumo F., Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993 Feb 11;361(6412):549–552. doi: 10.1038/361549a0. [DOI] [PubMed] [Google Scholar]
  13. Hasegawa H., Lian S. C., Finkbeiner W. E., Verkman A. S. Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am J Physiol. 1994 Apr;266(4 Pt 1):C893–C903. doi: 10.1152/ajpcell.1994.266.4.C893. [DOI] [PubMed] [Google Scholar]
  14. Hasegawa H., Ma T., Skach W., Matthay M. A., Verkman A. S. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem. 1994 Feb 25;269(8):5497–5500. [PubMed] [Google Scholar]
  15. Hasegawa H., Zhang R., Dohrman A., Verkman A. S. Tissue-specific expression of mRNA encoding rat kidney water channel CHIP28k by in situ hybridization. Am J Physiol. 1993 Jan;264(1 Pt 1):C237–C245. doi: 10.1152/ajpcell.1993.264.1.C237. [DOI] [PubMed] [Google Scholar]
  16. Ishibashi K., Sasaki S., Fushimi K., Uchida S., Kuwahara M., Saito H., Furukawa T., Nakajima K., Yamaguchi Y., Gojobori T. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6269–6273. doi: 10.1073/pnas.91.14.6269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuwahara M., Berry C. A., Verkman A. S. Rapid development of vasopressin-induced hydroosmosis in kidney collecting tubules measured by a new fluorescence technique. Biophys J. 1988 Oct;54(4):595–602. doi: 10.1016/S0006-3495(88)82994-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kuwahara M., Shi L. B., Marumo F., Verkman A. S. Transcellular water flow modulates water channel exocytosis and endocytosis in kidney collecting tubule. J Clin Invest. 1991 Aug;88(2):423–429. doi: 10.1172/JCI115321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuwahara M., Verkman A. S. Direct fluorescence measurement of diffusional water permeability in the vasopressin-sensitive kidney collecting tubule. Biophys J. 1988 Oct;54(4):587–593. doi: 10.1016/S0006-3495(88)82993-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ma T., Frigeri A., Hasegawa H., Verkman A. S. Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter. J Biol Chem. 1994 Aug 26;269(34):21845–21849. [PubMed] [Google Scholar]
  21. Ma T., Frigeri A., Skach W., Verkman A. S. Cloning of a novel rat kidney cDNA homologous to CHIP28 and WCH-CD water channels. Biochem Biophys Res Commun. 1993 Dec 15;197(2):654–659. doi: 10.1006/bbrc.1993.2529. [DOI] [PubMed] [Google Scholar]
  22. Macklem P. T., Proctor D. F., Hogg J. C. The stability of peripheral airways. Respir Physiol. 1970 Jan;8(2):191–203. doi: 10.1016/0034-5687(70)90015-0. [DOI] [PubMed] [Google Scholar]
  23. Matalon S. Mechanisms and regulation of ion transport in adult mammalian alveolar type II pneumocytes. Am J Physiol. 1991 Nov;261(5 Pt 1):C727–C738. doi: 10.1152/ajpcell.1991.261.5.C727. [DOI] [PubMed] [Google Scholar]
  24. Matthay M. A., Wiener-Kronish J. P. Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am Rev Respir Dis. 1990 Dec;142(6 Pt 1):1250–1257. doi: 10.1164/ajrccm/142.6_Pt_1.1250. [DOI] [PubMed] [Google Scholar]
  25. Nielsen S., Smith B. L., Christensen E. I., Agre P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7275–7279. doi: 10.1073/pnas.90.15.7275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Preston G. M., Smith B. L., Zeidel M. L., Moulds J. J., Agre P. Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science. 1994 Sep 9;265(5178):1585–1587. doi: 10.1126/science.7521540. [DOI] [PubMed] [Google Scholar]
  27. Raina S., Preston G. M., Guggino W. B., Agre P. Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J Biol Chem. 1995 Jan 27;270(4):1908–1912. doi: 10.1074/jbc.270.4.1908. [DOI] [PubMed] [Google Scholar]
  28. Reizer J., Reizer A., Saier M. H., Jr The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution, and proposed functional differentiation of the two repeated halves of the proteins. Crit Rev Biochem Mol Biol. 1993;28(3):235–257. doi: 10.3109/10409239309086796. [DOI] [PubMed] [Google Scholar]
  29. Shi L. B., Fushimi K., Verkman A. S. Solvent drag measurement of transcellular and basolateral membrane NaCl reflection coefficient in kidney proximal tubule. J Gen Physiol. 1991 Aug;98(2):379–398. doi: 10.1085/jgp.98.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shi L. B., Skach W. R., Ma T., Verkman A. S. Distinct biogenesis mechanisms for the water channels MIWC and CHIP28 at the endoplasmic reticulum. Biochemistry. 1995 Jul 4;34(26):8250–8256. doi: 10.1021/bi00026a006. [DOI] [PubMed] [Google Scholar]
  31. Verkman A. S. Optical methods to measure membrane transport processes. J Membr Biol. 1995 Nov;148(2):99–110. doi: 10.1007/BF00207267. [DOI] [PubMed] [Google Scholar]
  32. Verkman A. S., van Hoek A. N., Ma T., Frigeri A., Skach W. R., Mitra A., Tamarappoo B. K., Farinas J. Water transport across mammalian cell membranes. Am J Physiol. 1996 Jan;270(1 Pt 1):C12–C30. doi: 10.1152/ajpcell.1996.270.1.C12. [DOI] [PubMed] [Google Scholar]
  33. Willumsen N. J., Davis C. W., Boucher R. C. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer. J Clin Invest. 1994 Aug;94(2):779–787. doi: 10.1172/JCI117397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yager D., Cloutier T., Feldman H., Bastacky J., Drazen J. M., Kamm R. D. Airway surface liquid thickness as a function of lung volume in small airways of the guinea pig. J Appl Physiol (1985) 1994 Nov;77(5):2333–2340. doi: 10.1152/jappl.1994.77.5.2333. [DOI] [PubMed] [Google Scholar]
  35. Yang B., Ma T., Verkman A. S. cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel. Evidence for distinct transcriptional units. J Biol Chem. 1995 Sep 29;270(39):22907–22913. doi: 10.1074/jbc.270.39.22907. [DOI] [PubMed] [Google Scholar]
  36. Zhang R. B., Verkman A. S. Water and urea permeability properties of Xenopus oocytes: expression of mRNA from toad urinary bladder. Am J Physiol. 1991 Jan;260(1 Pt 1):C26–C34. doi: 10.1152/ajpcell.1991.260.1.C26. [DOI] [PubMed] [Google Scholar]
  37. Zhang R., Skach W., Hasegawa H., van Hoek A. N., Verkman A. S. Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28. J Cell Biol. 1993 Jan;120(2):359–369. doi: 10.1083/jcb.120.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. al-Bazzaz F. J., Tarka C., Farah M. Microperfusion of sheep bronchioles. Am J Physiol. 1991 Jun;260(6 Pt 1):L594–L602. doi: 10.1152/ajplung.1991.260.6.L594. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES