Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Feb 1;97(3):681–688. doi: 10.1172/JCI118465

Oxidation of pristanic acid in fibroblasts and its application to the diagnosis of peroxisomal beta-oxidation defects.

B C Paton 1, P C Sharp 1, D I Crane 1, A Poulos 1
PMCID: PMC507104  PMID: 8609223

Abstract

Pristanic acid oxidation measurements proved a reliable tool for assessing complementation in fused heterokaryons from patients with peroxisomal biogenesis defects. We, therefore, used this method to determine the complementation groups of patients with isolated defects in peroxisomal beta-oxidation. The rate of oxidation of pristanic acid was reduced in affected cell lines from all of the families with inherited defects in peroxisomal beta-oxidation, thus excluding the possibility of a defective acyl CoA oxidase. Complementation analyses indicated that all of the patients belonged to the same complementation group, which corresponded to cell lines with bifunctional protein defects. Phytanic acid oxidation was reduced in fibroblasts from some, but not all, of the patients. Plasma samples were still available from six of the patients. The ratio of pristanic acid to phytanic acid was elevated in all of these samples, as were the levels of saturated very long chain fatty acids (VLCFA). However, the levels of bile acid intermediates, polyenoic VLCFA, and docosahexaenoic acid were abnormal in only some of the samples. Pristanic acid oxidation measurements were helpful in a prenatal assessment for one of the families where previous experience had shown that cellular VLCFA levels were not consistently elevated in affected individuals.

Full Text

The Full Text of this article is available as a PDF (196.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
  2. Barth P. G., Wanders R. J., Schutgens R. B., Bleeker-Wagemakers E. M., van Heemstra D. Peroxisomal beta-oxidation defect with detectable peroxisomes: a case with neonatal onset and progressive course. Eur J Pediatr. 1990 Jul;149(10):722–726. doi: 10.1007/BF01959531. [DOI] [PubMed] [Google Scholar]
  3. Brul S., Westerveld A., Strijland A., Wanders R. J., Schram A. W., Heymans H. S., Schutgens R. B., van den Bosch H., Tager J. M. Genetic heterogeneity in the cerebrohepatorenal (Zellweger) syndrome and other inherited disorders with a generalized impairment of peroxisomal functions. A study using complementation analysis. J Clin Invest. 1988 Jun;81(6):1710–1715. doi: 10.1172/JCI113510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brul S., Wiemer E. A., Westerveld A., Strijland A., Wanders R. J., Schram A. W., Heymans H. S., Schutgens R. B., Van den Bosch H., Tager J. M. Kinetics of the assembly of peroxisomes after fusion of complementary cell lines from patients with the cerebro-hepato-renal (Zellweger) syndrome and related disorders. Biochem Biophys Res Commun. 1988 May 16;152(3):1083–1089. doi: 10.1016/s0006-291x(88)80395-4. [DOI] [PubMed] [Google Scholar]
  5. Carey W. F., Poulos A., Sharp P., Nelson P. V., Robertson E. F., Hughes J. L., Gill A. Pitfalls in the prenatal diagnosis of peroxisomal beta-oxidation defects by chorionic villus sampling. Prenat Diagn. 1994 Sep;14(9):813–819. doi: 10.1002/pd.1970140909. [DOI] [PubMed] [Google Scholar]
  6. Chen N. H., Crane D. I., Masters C. J. Analysis of the major integral membrane proteins of peroxisomes from mouse liver. Biochim Biophys Acta. 1988 Nov 22;945(2):135–144. doi: 10.1016/0005-2736(88)90476-2. [DOI] [PubMed] [Google Scholar]
  7. Clayton P. T., Lake B. D., Hjelm M., Stephenson J. B., Besley G. T., Wanders R. J., Schram A. W., Tager J. M., Schutgens R. B., Lawson A. M. Bile acid analyses in "pseudo-Zellweger" syndrome; clues to the defect in peroxisomal beta-oxidation. J Inherit Metab Dis. 1988;11 (Suppl 2):165–168. doi: 10.1007/BF01804226. [DOI] [PubMed] [Google Scholar]
  8. Clayton P. T., Patel E., Lawson A. M., Carruthers R. A., Collins J. Bile acid profiles in peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency. J Clin Invest. 1990 Apr;85(4):1267–1273. doi: 10.1172/JCI114563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crane D. I., Chen N. H., Masters C. J. Evidence that the enoyl-CoA hydratase bifunctional protein of mouse liver peroxisomes is identical with the 70,000 dalton peroxisomal membrane protein. Biochem Biophys Res Commun. 1989 Apr 28;160(2):503–508. doi: 10.1016/0006-291x(89)92461-3. [DOI] [PubMed] [Google Scholar]
  10. Dodt G., Braverman N., Wong C., Moser A., Moser H. W., Watkins P., Valle D., Gould S. J. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet. 1995 Feb;9(2):115–125. doi: 10.1038/ng0295-115. [DOI] [PubMed] [Google Scholar]
  11. Dunn S. D. Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. Anal Biochem. 1986 Aug 15;157(1):144–153. doi: 10.1016/0003-2697(86)90207-1. [DOI] [PubMed] [Google Scholar]
  12. Espeel M., Roels F., Van Maldergem L., De Craemer D., Dacremont G., Wanders R. J., Hashimoto T. Peroxisomal localization of the immunoreactive beta-oxidation enzymes in a neonate with a beta-oxidation defect. Pathological observations in liver, adrenal cortex and kidney. Virchows Arch A Pathol Anat Histopathol. 1991;419(4):301–308. doi: 10.1007/BF01606521. [DOI] [PubMed] [Google Scholar]
  13. Hoefler G., Paschke E., Hoefler S., Moser A. B., Moser H. W. Photosensitized killing of cultured fibroblasts from patients with peroxisomal disorders due to pyrene fatty acid-mediated ultraviolet damage. J Clin Invest. 1991 Dec;88(6):1873–1879. doi: 10.1172/JCI115509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hughes J. L., Crane D. I., Robertson E., Poulos A. Morphometry of peroxisomes and immunolocalization of peroxisomal proteins in the liver of patients with generalised peroxisomal disorders. Virchows Arch A Pathol Anat Histopathol. 1993;423(6):459–468. doi: 10.1007/BF01606536. [DOI] [PubMed] [Google Scholar]
  15. Lazarow P. B., de Duve C. The synthesis and turnover of rat liver peroxisomes. V. Intracellular pathway of catalase synthesis. J Cell Biol. 1973 Nov;59(2 Pt 1):507–524. doi: 10.1083/jcb.59.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martinez M., Mougan I., Roig M., Ballabriga A. Blood polyunsaturated fatty acids in patients with peroxisomal disorders. A multicenter study. Lipids. 1994 Apr;29(4):273–280. doi: 10.1007/BF02536332. [DOI] [PubMed] [Google Scholar]
  17. McGuinness M. C., Moser A. B., Moser H. W., Watkins P. A. Peroxisomal disorders: complementation analysis using beta-oxidation of very long chain fatty acids. Biochem Biophys Res Commun. 1990 Oct 15;172(1):364–369. doi: 10.1016/s0006-291x(05)80218-9. [DOI] [PubMed] [Google Scholar]
  18. McGuinness M. C., Moser A. B., Poll-The B. T., Watkins P. A. Complementation analysis of patients with intact peroxisomes and impaired peroxisomal beta-oxidation. Biochem Med Metab Biol. 1993 Apr;49(2):228–242. doi: 10.1006/bmmb.1993.1025. [DOI] [PubMed] [Google Scholar]
  19. Motley A., Hettema E., Distel B., Tabak H. Differential protein import deficiencies in human peroxisome assembly disorders. J Cell Biol. 1994 May;125(4):755–767. doi: 10.1083/jcb.125.4.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Naidu S., Hoefler G., Watkins P. A., Chen W. W., Moser A. B., Hoefler S., Rance N. E., Powers J. M., Beard M., Green W. R. Neonatal seizures and retardation in a girl with biochemical features of X-linked adrenoleukodystrophy: a possible new peroxisomal disease entity. Neurology. 1988 Jul;38(7):1100–1107. doi: 10.1212/wnl.38.7.1100. [DOI] [PubMed] [Google Scholar]
  21. Nakada Y., Hyakuna N., Suzuki Y., Shimozawa N., Takaesu E., Ikema R., Hirayama K. A case of pseudo-Zellweger syndrome with a possible bifunctional enzyme deficiency but detectable enzyme protein. Comparison of two cases of Zellweger syndrome. Brain Dev. 1993 Nov-Dec;15(6):453–456. doi: 10.1016/0387-7604(93)90087-o. [DOI] [PubMed] [Google Scholar]
  22. Nelson P. V., Carey W. F. A method for enrichment of hybrid somatic cells: complementation studies in certain lysosomal enzymopathies. J Inherit Metab Dis. 1985;8(3):95–99. doi: 10.1007/BF01819286. [DOI] [PubMed] [Google Scholar]
  23. Novikov D. K., Vanhove G. F., Carchon H., Asselberghs S., Eyssen H. J., Van Veldhoven P. P., Mannaerts G. P. Peroxisomal beta-oxidation. Purification of four novel 3-hydroxyacyl-CoA dehydrogenases from rat liver peroxisomes. J Biol Chem. 1994 Oct 28;269(43):27125–27135. [PubMed] [Google Scholar]
  24. PRICE V. E., STERLING W. R., TARANTOLA V. A., HARTLEY R. W., Jr, RECHCIGL M., Jr The kinetics of catalase synthesis and destruction in vivo. J Biol Chem. 1962 Nov;237:3468–3475. [PubMed] [Google Scholar]
  25. Palosaari P. M., Hiltunen J. K. Peroxisomal bifunctional protein from rat liver is a trifunctional enzyme possessing 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and delta 3, delta 2-enoyl-CoA isomerase activities. J Biol Chem. 1990 Feb 15;265(5):2446–2449. [PubMed] [Google Scholar]
  26. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  27. Poll-The B. T., Roels F., Ogier H., Scotto J., Vamecq J., Schutgens R. B., Wanders R. J., van Roermund C. W., van Wijland M. J., Schram A. W. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Am J Hum Genet. 1988 Mar;42(3):422–434. [PMC free article] [PubMed] [Google Scholar]
  28. Poll-The B. T., Skjeldal O. H., Stokke O., Poulos A., Demaugre F., Saudubray J. M. Phytanic acid alpha-oxidation and complementation analysis of classical Refsum and peroxisomal disorders. Hum Genet. 1989 Jan;81(2):175–181. doi: 10.1007/BF00293897. [DOI] [PubMed] [Google Scholar]
  29. Poulos A., Christodoulou J., Chow C. W., Goldblatt J., Paton B. C., Orii T., Suzuki Y., Shimozawa N. Peroxisomal assembly defects: clinical, pathologic, and biochemical findings in two patients in a newly identified complementation group. J Pediatr. 1995 Oct;127(4):596–599. doi: 10.1016/s0022-3476(95)70121-4. [DOI] [PubMed] [Google Scholar]
  30. Poulos A. Diagnosis of Refsum's disease using [1-14C]phytanic acid as substrate. Clin Genet. 1981 Oct;20(4):247–253. doi: 10.1111/j.1399-0004.1981.tb01029.x. [DOI] [PubMed] [Google Scholar]
  31. Poulos A., Gibson R., Sharp P., Beckman K., Grattan-Smith P. Very long chain fatty acids in X-linked adrenoleukodystrophy brain after treatment with Lorenzo's oil. Ann Neurol. 1994 Nov;36(5):741–746. doi: 10.1002/ana.410360509. [DOI] [PubMed] [Google Scholar]
  32. Poulos A., Sharp P., Fellenberg A. J., Johnson D. W. Accumulation of pristanic acid (2, 6, 10, 14 tetramethylpentadecanoic acid) in the plasma of patients with generalised peroxisomal dysfunction. Eur J Pediatr. 1988 Feb;147(2):143–147. doi: 10.1007/BF00442211. [DOI] [PubMed] [Google Scholar]
  33. Roels F., Pauwels M., Poll-Thé B. T., Scotto J., Ogier H., Aubourg P., Saudubray J. M. Hepatic peroxisomes in adrenoleukodystrophy and related syndromes: cytochemical and morphometric data. Virchows Arch A Pathol Anat Histopathol. 1988;413(4):275–285. doi: 10.1007/BF00783019. [DOI] [PubMed] [Google Scholar]
  34. Roscher A. A., Hoefler S., Hoefler G., Paschke E., Paltauf F., Moser A., Moser H. Genetic and phenotypic heterogeneity in disorders of peroxisome biogenesis--a complementation study involving cell lines from 19 patients. Pediatr Res. 1989 Jul;26(1):67–72. doi: 10.1203/00006450-198907000-00019. [DOI] [PubMed] [Google Scholar]
  35. Santer R., Claviez A., Oldigs H. D., Schaub J., Schutgens R. B., Wanders R. J. Isolated defect of peroxisomal beta-oxidation in a 16-year-old patient. Eur J Pediatr. 1993 Apr;152(4):339–342. doi: 10.1007/BF01956749. [DOI] [PubMed] [Google Scholar]
  36. Schram A. W., Goldfischer S., van Roermund C. W., Brouwer-Kelder E. M., Collins J., Hashimoto T., Heymans H. S., van den Bosch H., Schutgens R. B., Tager J. M. Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2494–2496. doi: 10.1073/pnas.84.8.2494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schutgens R. B., Romeyn G. J., Wanders R. J., van den Bosch H., Schrakamp G., Heymans H. S. Deficiency of acyl-CoA: dihydroxyacetone phosphate acyltransferase in patients with Zellweger (cerebro-hepato-renal) syndrome. Biochem Biophys Res Commun. 1984 Apr 16;120(1):179–184. doi: 10.1016/0006-291x(84)91430-x. [DOI] [PubMed] [Google Scholar]
  38. Shimozawa N., Suzuki Y., Orii T., Moser A., Moser H. W., Wanders R. J. Standardization of complementation grouping of peroxisome-deficient disorders and the second Zellweger patient with peroxisomal assembly factor-1 (PAF-1) defect. Am J Hum Genet. 1993 Apr;52(4):843–844. [PMC free article] [PubMed] [Google Scholar]
  39. Singh A. K., Kulvatunyou N., Singh I., Stanley W. S. In situ genetic complementation analysis of cells with generalized peroxisomal dysfunction. Hum Hered. 1989;39(5):298–301. doi: 10.1159/000153876. [DOI] [PubMed] [Google Scholar]
  40. Singh H., Beckman K., Poulos A. Exclusive localization in peroxisomes of dihydroxyacetone phosphate acyltransferase and alkyl-dihydroxyacetone phosphate synthase in rat liver. J Lipid Res. 1993 Mar;34(3):467–477. [PubMed] [Google Scholar]
  41. Singh H., Usher S., Johnson D., Poulos A. A comparative study of straight chain and branched chain fatty acid oxidation in skin fibroblasts from patients with peroxisomal disorders. J Lipid Res. 1990 Feb;31(2):217–225. [PubMed] [Google Scholar]
  42. Stanczak H., Kremser K., Singh A. K., Ashcraft J., Stanley W., Singh I. Complementation in Zellweger syndrome: biochemical analysis of newly generated peroxisomes. Hum Hered. 1992;42(3):172–178. doi: 10.1159/000154062. [DOI] [PubMed] [Google Scholar]
  43. Suzuki Y., Shimozawa N., Yajima S., Tomatsu S., Kondo N., Nakada Y., Akaboshi S., Lai M., Tanabe Y., Hashimoto T. Novel subtype of peroxisomal acyl-CoA oxidase deficiency and bifunctional enzyme deficiency with detectable enzyme protein: identification by means of complementation analysis. Am J Hum Genet. 1994 Jan;54(1):36–43. [PMC free article] [PubMed] [Google Scholar]
  44. Tan K. K. Assay of proteins by Lowry's method in samples containing 2-mercaptoethanol. Anal Biochem. 1978 May;86(1):327–331. doi: 10.1016/0003-2697(78)90351-2. [DOI] [PubMed] [Google Scholar]
  45. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vanhove G. F., Van Veldhoven P. P., Fransen M., Denis S., Eyssen H. J., Wanders R. J., Mannaerts G. P. The CoA esters of 2-methyl-branched chain fatty acids and of the bile acid intermediates di- and trihydroxycoprostanic acids are oxidized by one single peroxisomal branched chain acyl-CoA oxidase in human liver and kidney. J Biol Chem. 1993 May 15;268(14):10335–10344. [PubMed] [Google Scholar]
  47. Wanders R. J., Kos M., Roest B., Meijer A. J., Schrakamp G., Heymans H. S., Tegelaers W. H., van den Bosch H., Schutgens R. B., Tager J. M. Activity of peroxisomal enzymes and intracellular distribution of catalase in Zellweger syndrome. Biochem Biophys Res Commun. 1984 Sep 28;123(3):1054–1061. doi: 10.1016/s0006-291x(84)80240-5. [DOI] [PubMed] [Google Scholar]
  48. Wanders R. J., Schutgens R. B., Barth P. G., Tager J. M., van den Bosch H. Postnatal diagnosis of peroxisomal disorders: a biochemical approach. Biochimie. 1993;75(3-4):269–279. doi: 10.1016/0300-9084(93)90087-9. [DOI] [PubMed] [Google Scholar]
  49. Wanders R. J., van Roermund C. W., Brul S., Schutgens R. B., Tager J. M. Bifunctional enzyme deficiency: identification of a new type of peroxisomal disorder in a patient with an impairment in peroxisomal beta-oxidation of unknown aetiology by means of complementation analysis. J Inherit Metab Dis. 1992;15(3):385–388. doi: 10.1007/BF02435983. [DOI] [PubMed] [Google Scholar]
  50. Watkins P. A., Chen W. W., Harris C. J., Hoefler G., Hoefler S., Blake D. C., Jr, Balfe A., Kelley R. I., Moser A. B., Beard M. E. Peroxisomal bifunctional enzyme deficiency. J Clin Invest. 1989 Mar;83(3):771–777. doi: 10.1172/JCI113956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yajima S., Suzuki Y., Shimozawa N., Yamaguchi S., Orii T., Fujiki Y., Osumi T., Hashimoto T., Moser H. W. Complementation study of peroxisome-deficient disorders by immunofluorescence staining and characterization of fused cells. Hum Genet. 1992 Mar;88(5):491–499. doi: 10.1007/BF00219334. [DOI] [PubMed] [Google Scholar]
  52. ten Brink H. J., Poll-The B. T., Saudubray J. M., Wanders R. J., Jakobs C. Pristanic acid does not accumulate in peroxisomal acyl-CoA oxidase deficiency: evidence for a distinct peroxisomal pristanyl-CoA oxidase. J Inherit Metab Dis. 1991;14(5):681–684. doi: 10.1007/BF01799934. [DOI] [PubMed] [Google Scholar]
  53. ten Brink H. J., Stellaard F., van den Heuvel C. M., Kok R. M., Schor D. S., Wanders R. J., Jakobs C. Pristanic acid and phytanic acid in plasma from patients with peroxisomal disorders: stable isotope dilution analysis with electron capture negative ion mass fragmentography. J Lipid Res. 1992 Jan;33(1):41–47. [PubMed] [Google Scholar]
  54. ten Brink H. J., Wanders R. J., Stellaard F., Schutgens R. B., Jakobs C. Pristanic acid and phytanic acid in plasma from patients with a single peroxisomal enzyme deficiency. J Inherit Metab Dis. 1991;14(3):345–348. doi: 10.1007/BF01811699. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES