Abstract
The chronic contact of glucose-containing dialysate and proteins results in the deposition of advanced glycation end products (AGEs) on peritoneal tissues in patients treated by peritoneal dialysis (PD), yet plasma levels of the AGE pentosidine are significantly lower in PD than in hemodialysis (HD). We measured glycation of peritoneal proteins in patients on PD over the time course of intraperitoneal equilibration of fresh peritoneal dialysate. The glycated content of peritoneal proteins (furosine method) was initially identical to plasma but increased 200% within 4 h due to in situ glycation as also demonstrated in vitro. In contrast, peritoneal proteins contained a 2-4 x greater content of the AGE pentosidine at all equilibrium time points. Plasma protein furosine content was identical in patients on PD and on HD. Fractionation by gel filtration of serum from patients on PD and HD revealed that > 95% of the pentosidine was linked to proteins > 10,000 mol wt; < 1% to proteins < 10,000 mol wt; and < 1%, free. Neither HD nor PD affected protein-bound pentosidine. The HD treatment decreased free and < 10,000 mol wt bound pentosidine. However clearance of protein-associated pentosidine by the peritoneal membrane may explain lower steady state levels in patients treated by PD.
Full Text
The Full Text of this article is available as a PDF (254.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S. S., Tsilibary E. C., Charonis A. S. Nonenzymatic glycosylation-induced modifications of intact bovine kidney tubular basement membrane. J Clin Invest. 1993 Dec;92(6):3045–3052. doi: 10.1172/JCI116929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beisswenger P. J., Moore L. L., Brinck-Johnsen T., Curphey T. J. Increased collagen-linked pentosidine levels and advanced glycosylation end products in early diabetic nephropathy. J Clin Invest. 1993 Jul;92(1):212–217. doi: 10.1172/JCI116552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen M. P., Hud E., Wu V. Y. Amelioration of diabetic nephropathy by treatment with monoclonal antibodies against glycated albumin. Kidney Int. 1994 Jun;45(6):1673–1679. doi: 10.1038/ki.1994.219. [DOI] [PubMed] [Google Scholar]
- Dulaney J. T., Hatch F. E., Jr Peritoneal dialysis and loss of proteins: a review. Kidney Int. 1984 Sep;26(3):253–262. doi: 10.1038/ki.1984.167. [DOI] [PubMed] [Google Scholar]
- Friedlander M. A., Wu Y. C., Schulak J. A., Monnier V. M., Hricik D. E. Influence of dialysis modality on plasma and tissue concentrations of pentosidine in patients with end-stage renal disease. Am J Kidney Dis. 1995 Mar;25(3):445–451. doi: 10.1016/0272-6386(95)90107-8. [DOI] [PubMed] [Google Scholar]
- Giardino I., Edelstein D., Brownlee M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J Clin Invest. 1994 Jul;94(1):110–117. doi: 10.1172/JCI117296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hricik D. E., Schulak J. A., Sell D. R., Fogarty J. F., Monnier V. M. Effects of kidney or kidney-pancreas transplantation on plasma pentosidine. Kidney Int. 1993 Feb;43(2):398–403. doi: 10.1038/ki.1993.58. [DOI] [PubMed] [Google Scholar]
- Kaysen G. A., Schoenfeld P. Y. Albumin homeostasis in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int. 1984 Jan;25(1):107–114. doi: 10.1038/ki.1984.15. [DOI] [PubMed] [Google Scholar]
- Korbet S. M., Makita Z., Firanek C. A., Vlassara H. Advanced glycosylation end products in continuous ambulatory peritoneal dialysis patients. Am J Kidney Dis. 1993 Oct;22(4):588–591. doi: 10.1016/s0272-6386(12)80933-4. [DOI] [PubMed] [Google Scholar]
- Makita Z., Bucala R., Rayfield E. J., Friedman E. A., Kaufman A. M., Korbet S. M., Barth R. H., Winston J. A., Fuh H., Manogue K. R. Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure. Lancet. 1994 Jun 18;343(8912):1519–1522. doi: 10.1016/s0140-6736(94)92935-1. [DOI] [PubMed] [Google Scholar]
- Makita Z., Radoff S., Rayfield E. J., Yang Z., Skolnik E., Delaney V., Friedman E. A., Cerami A., Vlassara H. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 1991 Sep 19;325(12):836–842. doi: 10.1056/NEJM199109193251202. [DOI] [PubMed] [Google Scholar]
- McCance D. R., Dyer D. G., Dunn J. A., Bailie K. E., Thorpe S. R., Baynes J. W., Lyons T. J. Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest. 1993 Jun;91(6):2470–2478. doi: 10.1172/JCI116482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odetti P., Fogarty J., Sell D. R., Monnier V. M. Chromatographic quantitation of plasma and erythrocyte pentosidine in diabetic and uremic subjects. Diabetes. 1992 Feb;41(2):153–159. doi: 10.2337/diab.41.2.153. [DOI] [PubMed] [Google Scholar]
- Papanastasiou P., Grass L., Rodela H., Patrikarea A., Oreopoulos D., Diamandis E. P. Immunological quantification of advanced glycosylation end-products in the serum of patients on hemodialysis or CAPD. Kidney Int. 1994 Jul;46(1):216–222. doi: 10.1038/ki.1994.262. [DOI] [PubMed] [Google Scholar]
- Sell D. R., Monnier V. M. End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J Clin Invest. 1990 Feb;85(2):380–384. doi: 10.1172/JCI114449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sell D. R., Monnier V. M. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 1989 Dec 25;264(36):21597–21602. [PubMed] [Google Scholar]
- Takahashi M., Kushida K., Kawana K., Ishihara C., Denda M., Inoue T., Horiuchi K. Quantification of the cross-link pentosidine in serum from normal and uremic subjects. Clin Chem. 1993 Oct;39(10):2162–2165. [PubMed] [Google Scholar]
- Takahashi M., Ohishi T., Aoshima H., Kawana K., Kushida K., Inoue T., Horiuchi K. The Maillard protein cross-link pentosidine in urine from diabetic patients. Diabetologia. 1993 Jul;36(7):664–667. doi: 10.1007/BF00404078. [DOI] [PubMed] [Google Scholar]
- Vlassara H., Bucala R., Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 1994 Feb;70(2):138–151. [PubMed] [Google Scholar]
- Vlassara H. Serum advanced glycosylation end products: a new class of uremic toxins? Blood Purif. 1994;12(1):54–59. doi: 10.1159/000170145. [DOI] [PubMed] [Google Scholar]
- Williams S. K., Devenny J. J., Bitensky M. W. Micropinocytic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2393–2397. doi: 10.1073/pnas.78.4.2393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams S. K., Siegal R. K. Preferential transport of non-enzymatically glucosylated ferritin across the kidney glomerulus. Kidney Int. 1985 Aug;28(2):146–152. doi: 10.1038/ki.1985.134. [DOI] [PubMed] [Google Scholar]
- Williams S. K., Solenski N. J. Enhanced vesicular ingestion of nonenzymatically glucosylated proteins by capillary endothelium. Microvasc Res. 1984 Nov;28(3):311–321. doi: 10.1016/0026-2862(84)90003-7. [DOI] [PubMed] [Google Scholar]
- Wu Y. C., Monnier V., Friedlander M. Reliable determination of furosine in human serum and dialysate proteins by high-performance liquid chromatography. J Chromatogr B Biomed Appl. 1995 May 19;667(2):328–332. doi: 10.1016/0378-4347(95)00038-k. [DOI] [PubMed] [Google Scholar]