Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Feb 1;97(3):736–745. doi: 10.1172/JCI118472

Modulation of basal nitric oxide-dependent cyclic-GMP production by ambient glucose, myo-inositol, and protein kinase C in SH-SY5Y human neuroblastoma cells.

H Shindo 1, T P Thomas 1, D D Larkin 1, A K Karihaloo 1, H Inada 1, T Onaya 1, M J Stevens 1, D A Greene 1
PMCID: PMC507111  PMID: 8609230

Abstract

Defective tissue perfusion and nitric oxide production and altered myo-inositol metabolism and protein kinase C activation have been invoked in the pathogenesis of diabetic complications including neuropathy. The precise cellular compartmentalization and mechanistic interrelationships of these abnormalities remain obscure, and nitric oxide possesses both neurotransmitter and vasodilator activity. Therefore the effects of ambient glucose and myo-inositol on nitric oxide-dependent cGMP production and protein kinase C activity were studied in SH-SY5Y human neuroblastoma cells, a cell culture model for peripheral cholinergic neurons. D-Glucose lowered cellular myo-inositol content, phosphatidylinositol synthesis, and phosphorylation of an endogenous protein kinase C substrate, and specifically reduced nitric oxide-dependent cGMP production a time- and dose-dependent manner with an apparent IC50 of approximately 30 mM. The near maximal decrease in cGMP induced by 50 mM D-glucose was corrected by the addition of protein kinase C agonists or 500 microM myo-inositol to the culture medium, and was reproduced by protein kinase C inhibition or downregulation, or by myo-inositol deficient medium. Sodium nitroprusside increased cGMP in a dose-dependent fashion, with low concentrations (1 microM) counteracting the effects of 50 mM D-glucose or protein kinase C inhibition. The demonstration that elevated D-glucose diminishes basal nitric oxide-dependent cGMP production by myo-inositol depletion and protein kinase C inhibition in peripheral cholinergic neurons provides a potential metabolic basis for impaired nitric oxide production, nerve blood flow, and nerve impulse conduction in diabetes.

Full Text

The Full Text of this article is available as a PDF (314.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abiru T., Watanabe Y., Kamata K., Miyata N., Kasuya Y. Decrease in endothelium-dependent relaxation and levels of cyclic nucleotides in aorta from rabbits with alloxan-induced diabetes. Res Commun Chem Pathol Pharmacol. 1990 Apr;68(1):13–25. [PubMed] [Google Scholar]
  2. Akagi Y., Yajima Y., Kador P. F., Kuwabara T., Kinoshita J. H. Localization of aldose reductase in the human eye. Diabetes. 1984 Jun;33(6):562–566. doi: 10.2337/diab.33.6.562. [DOI] [PubMed] [Google Scholar]
  3. Ballester R., Rosen O. M. Fate of immunoprecipitable protein kinase C in GH3 cells treated with phorbol 12-myristate 13-acetate. J Biol Chem. 1985 Dec 5;260(28):15194–15199. [PubMed] [Google Scholar]
  4. Borghini I., Ania-Lahuerta A., Regazzi R., Ferrari G., Gjinovci A., Wollheim C. B., Pralong W. F. Alpha, beta I, beta II, delta, and epsilon protein kinase C isoforms and compound activity in the sciatic nerve of normal and diabetic rats. J Neurochem. 1994 Feb;62(2):686–696. [PubMed] [Google Scholar]
  5. Borghini I., Geering K., Gjinovci A., Wollheim C. B., Pralong W. F. In vivo phosphorylation of the Na,K-ATPase alpha subunit in sciatic nerves of control and diabetic rats: effects of protein kinase modulators. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6211–6215. doi: 10.1073/pnas.91.13.6211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boscá L., Lazo P. A. Induction of nitric oxide release by MRC OX-44 (anti-CD53) through a protein kinase C-dependent pathway in rat macrophages. J Exp Med. 1994 Apr 1;179(4):1119–1126. doi: 10.1084/jem.179.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bredt D. S., Ferris C. D., Snyder S. H. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem. 1992 Jun 5;267(16):10976–10981. [PubMed] [Google Scholar]
  8. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  9. Bult H., Boeckxstaens G. E., Pelckmans P. A., Jordaens F. H., Van Maercke Y. M., Herman A. G. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature. 1990 May 24;345(6273):346–347. doi: 10.1038/345346a0. [DOI] [PubMed] [Google Scholar]
  10. Cameron N. E., Cotter M. A., Dines K. C., Maxfield E. K., Carey F., Mirrlees D. J. Aldose reductase inhibition, nerve perfusion, oxygenation and function in streptozotocin-diabetic rats: dose-response considerations and independence from a myo-inositol mechanism. Diabetologia. 1994 Jul;37(7):651–663. doi: 10.1007/BF00417688. [DOI] [PubMed] [Google Scholar]
  11. Cameron N. E., Cotter M. A., Ferguson K., Robertson S., Radcliffe M. A. Effects of chronic alpha-adrenergic receptor blockade on peripheral nerve conduction, hypoxic resistance, polyols, Na(+)-K(+)-ATPase activity, and vascular supply in STZ-D rats. Diabetes. 1991 Dec;40(12):1652–1658. doi: 10.2337/diab.40.12.1652. [DOI] [PubMed] [Google Scholar]
  12. Cameron N. E., Cotter M. A. Impaired contraction and relaxation in aorta from streptozotocin-diabetic rats: role of polyol pathway. Diabetologia. 1992 Nov;35(11):1011–1019. doi: 10.1007/BF02221675. [DOI] [PubMed] [Google Scholar]
  13. Cameron N. E., Cotter M. A., Low P. A. Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol. 1991 Jul;261(1 Pt 1):E1–E8. doi: 10.1152/ajpendo.1991.261.1.E1. [DOI] [PubMed] [Google Scholar]
  14. Cameron N. E., Cotter M. A., Robertson S. Angiotensin converting enzyme inhibition prevents development of muscle and nerve dysfunction and stimulates angiogenesis in streptozotocin-diabetic rats. Diabetologia. 1992 Jan;35(1):12–18. doi: 10.1007/BF00400846. [DOI] [PubMed] [Google Scholar]
  15. Cammarata P. R., Chen H. Q. Osmoregulatory alterations in myo-inositol uptake by bovine lens epithelial cells. Part 1: A hypertonicity-induced protein enhances myo-inositol transport. Invest Ophthalmol Vis Sci. 1994 Mar;35(3):1223–1235. [PubMed] [Google Scholar]
  16. Cammarata P. R., Chen H. Q., Yang J., Yorio T. Modulation of myo-[3H]inositol uptake by glucose and sorbitol in cultured bovine lens epithelial cells. II. Characterization of high- and low-affinity myo-inositol transport sites. Invest Ophthalmol Vis Sci. 1992 Dec;33(13):3572–3580. [PubMed] [Google Scholar]
  17. Chaki S., Inagami T. New signaling mechanism of angiotensin II in neuroblastoma neuro-2A cells: activation of soluble guanylyl cyclase via nitric oxide synthesis. Mol Pharmacol. 1993 Apr;43(4):603–608. [PubMed] [Google Scholar]
  18. Chakravarthy B. R., Isaacs R. J., Morley P., Durkin J. P., Whitfield J. F. Stimulation of protein kinase C during Ca(2+)-induced keratinocyte differentiation. Selective blockade of MARCKS phosphorylation by calmodulin. J Biol Chem. 1995 Jan 20;270(3):1362–1368. doi: 10.1074/jbc.270.3.1362. [DOI] [PubMed] [Google Scholar]
  19. Chang K. S., Stevens W. C. Endothelium-dependent increase in vascular sensitivity to phenylephrine in long-term streptozotocin diabetic rat aorta. Br J Pharmacol. 1992 Dec;107(4):983–990. doi: 10.1111/j.1476-5381.1992.tb13395.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Clermont A. C., Brittis M., Shiba T., McGovern T., King G. L., Bursell S. E. Normalization of retinal blood flow in diabetic rats with primary intervention using insulin pumps. Invest Ophthalmol Vis Sci. 1994 Mar;35(3):981–990. [PubMed] [Google Scholar]
  21. Craven P. A., Davidson C. M., DeRubertis F. R. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes. 1990 Jun;39(6):667–674. doi: 10.2337/diab.39.6.667. [DOI] [PubMed] [Google Scholar]
  22. Craven P. A., Studer R. K., DeRubertis F. R. Impaired nitric oxide-dependent cyclic guanosine monophosphate generation in glomeruli from diabetic rats. Evidence for protein kinase C-mediated suppression of the cholinergic response. J Clin Invest. 1994 Jan;93(1):311–320. doi: 10.1172/JCI116961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Davda R. K., Chandler L. J., Guzman N. J. Protein kinase C modulates receptor-independent activation of endothelial nitric oxide synthase. Eur J Pharmacol. 1994 Feb 15;266(3):237–244. doi: 10.1016/0922-4106(94)90132-5. [DOI] [PubMed] [Google Scholar]
  24. Del Monte M. A., Rabbani R., Diaz T. C., Lattimer S. A., Nakamura J., Brennan M. C., Greene D. A. Sorbitol, myo-inositol, and rod outer segment phagocytosis in cultured hRPE cells exposed to glucose. In vitro model of myo-inositol depletion hypothesis of diabetic complications. Diabetes. 1991 Oct;40(10):1335–1345. [PubMed] [Google Scholar]
  25. Díaz-Guerra M. J., Boscá L. Lack of translocation of protein kinase C from the cytosol to the membranes in vasopressin-stimulated hepatocytes. Biochem J. 1990 Jul 1;269(1):163–168. doi: 10.1042/bj2690163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Erne P., Mazurek N., Borner C., Conscience J. F., Eppenberger U., Fabbro D. Translocation of protein kinase C is not required to inhibit the antigen-induced increase of cytosolic calcium in a mast cell line. Biochem Biophys Res Commun. 1987 Feb 27;143(1):252–259. doi: 10.1016/0006-291x(87)90658-9. [DOI] [PubMed] [Google Scholar]
  27. Fisher S. K., Heacock A. M., Agranoff B. W. Inositol lipids and signal transduction in the nervous system: an update. J Neurochem. 1992 Jan;58(1):18–38. doi: 10.1111/j.1471-4159.1992.tb09273.x. [DOI] [PubMed] [Google Scholar]
  28. Fujisawa H., Ogura T., Kurashima Y., Yokoyama T., Yamashita J., Esumi H. Expression of two types of nitric oxide synthase mRNA in human neuroblastoma cell lines. J Neurochem. 1994 Jul;63(1):140–145. doi: 10.1046/j.1471-4159.1994.63010140.x. [DOI] [PubMed] [Google Scholar]
  29. Förstermann U., Pollock J. S., Schmidt H. H., Heller M., Murad F. Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1788–1792. doi: 10.1073/pnas.88.5.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Geller D. A., Lowenstein C. J., Shapiro R. A., Nussler A. K., Di Silvio M., Wang S. C., Nakayama D. K., Simmons R. L., Snyder S. H., Billiar T. R. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3491–3495. doi: 10.1073/pnas.90.8.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ghahary A., Chakrabarti S., Sima A. A., Murphy L. J. Effect of insulin and statil on aldose reductase expression in diabetic rats. Diabetes. 1991 Nov;40(11):1391–1396. doi: 10.2337/diab.40.11.1391. [DOI] [PubMed] [Google Scholar]
  32. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  33. Greene D. A., De Jesus P. V., Jr, Winegrad A. I. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest. 1975 Jun;55(6):1326–1336. doi: 10.1172/JCI108052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Greene D. A., Lattimer-Greene S., Sima A. A. Pathogenesis of diabetic neuropathy: role of altered phosphoinositide metabolism. Crit Rev Neurobiol. 1989;5(2):143–219. [PubMed] [Google Scholar]
  35. Greene D. A., Lattimer S. A. Protein kinase C agonists acutely normalize decreased ouabain-inhibitable respiration in diabetic rabbit nerve. Implications for (Na,K)-ATPase regulation and diabetic complications. Diabetes. 1986 Feb;35(2):242–245. doi: 10.2337/diab.35.2.242. [DOI] [PubMed] [Google Scholar]
  36. Greene D. A., Lattimer S. A. Sodium- and energy-dependent uptake of myo-inositol by rabbit peripheral nerve. Competitive inhibition by glucose and lack of an insulin effect. J Clin Invest. 1982 Nov;70(5):1009–1018. doi: 10.1172/JCI110688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Greene D. A., Sima A. A., Stevens M. J., Feldman E. L., Killen P. D., Henry D. N., Thomas T., Dananberg J., Lattimer S. A. Aldose reductase inhibitors: an approach to the treatment of diabetic nerve damage. Diabetes Metab Rev. 1993 Oct;9(3):189–217. doi: 10.1002/dmr.5610090304. [DOI] [PubMed] [Google Scholar]
  38. Greene D. A., Sima A. A., Stevens M. J., Feldman E. L., Lattimer S. A. Complications: neuropathy, pathogenetic considerations. Diabetes Care. 1992 Dec;15(12):1902–1925. doi: 10.2337/diacare.15.12.1902. [DOI] [PubMed] [Google Scholar]
  39. Gupta S., McArthur C., Grady C., Ruderman N. B. Stimulation of vascular Na(+)-K(+)-ATPase activity by nitric oxide: a cGMP-independent effect. Am J Physiol. 1994 May;266(5 Pt 2):H2146–H2151. doi: 10.1152/ajpheart.1994.266.5.H2146. [DOI] [PubMed] [Google Scholar]
  40. Gupta S., Sussman I., McArthur C. S., Tornheim K., Cohen R. A., Ruderman N. B. Endothelium-dependent inhibition of Na(+)-K+ ATPase activity in rabbit aorta by hyperglycemia. Possible role of endothelium-derived nitric oxide. J Clin Invest. 1992 Sep;90(3):727–732. doi: 10.1172/JCI115944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Haefliger I. O., Zschauer A., Anderson D. R. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci. 1994 Mar;35(3):991–997. [PubMed] [Google Scholar]
  42. Henry D. N., Del Monte M., Greene D. A., Killen P. D. Altered aldose reductase gene regulation in cultured human retinal pigment epithelial cells. J Clin Invest. 1993 Aug;92(2):617–623. doi: 10.1172/JCI116629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hortelano S., Genaro A. M., Boscá L. Phorbol esters induce nitric oxide synthase activity in rat hepatocytes. Antagonism with the induction elicited by lipopolysaccharide. J Biol Chem. 1992 Dec 15;267(35):24937–24940. [PubMed] [Google Scholar]
  44. Hortelano S., Genaro A. M., Boscá L. Phorbol esters induce nitric oxide synthase and increase arginine influx in cultured peritoneal macrophages. FEBS Lett. 1993 Apr 5;320(2):135–139. doi: 10.1016/0014-5793(93)80078-9. [DOI] [PubMed] [Google Scholar]
  45. Inoguchi T., Battan R., Handler E., Sportsman J. R., Heath W., King G. L. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11059–11063. doi: 10.1073/pnas.89.22.11059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Janssens S. P., Shimouchi A., Quertermous T., Bloch D. B., Bloch K. D. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J Biol Chem. 1992 Jul 25;267(21):14519–14522. [PubMed] [Google Scholar]
  47. Jun C. D., Hoon-Ryu, Um J. Y., Kim T. Y., Kim J. M., Kang S. S., Kim H. M., Chung H. T. Involvement of protein kinase C in the inhibition of nitric oxide production from murine microglial cells by glucocorticoid. Biochem Biophys Res Commun. 1994 Mar 15;199(2):633–638. doi: 10.1006/bbrc.1994.1275. [DOI] [PubMed] [Google Scholar]
  48. Kamata K., Miyata N., Kasuya Y. Impairment of endothelium-dependent relaxation and changes in levels of cyclic GMP in aorta from streptozotocin-induced diabetic rats. Br J Pharmacol. 1989 Jun;97(2):614–618. doi: 10.1111/j.1476-5381.1989.tb11993.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Kawabe J., Ohsaki Y., Onodera S. Down-regulation of protein kinase C potentiates atrial natriuretic peptide-stimulated cGMP accumulation in vascular smooth-muscle cells. Biochim Biophys Acta. 1992 Dec 15;1175(1):81–87. doi: 10.1016/0167-4889(92)90012-z. [DOI] [PubMed] [Google Scholar]
  50. Keaney J. F., Jr, Simon D. I., Stamler J. S., Jaraki O., Scharfstein J., Vita J. A., Loscalzo J. NO forms an adduct with serum albumin that has endothelium-derived relaxing factor-like properties. J Clin Invest. 1993 Apr;91(4):1582–1589. doi: 10.1172/JCI116364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kim J., Kyriazi H., Greene D. A. Normalization of Na(+)-K(+)-ATPase activity in isolated membrane fraction from sciatic nerves of streptozocin-induced diabetic rats by dietary myo-inositol supplementation in vivo or protein kinase C agonists in vitro. Diabetes. 1991 May;40(5):558–567. doi: 10.2337/diab.40.5.558. [DOI] [PubMed] [Google Scholar]
  52. Kim J., Rushovich E. H., Thomas T. P., Ueda T., Agranoff B. W., Greene D. A. Diminished specific activity of cytosolic protein kinase C in sciatic nerve of streptozocin-induced diabetic rats and its correction by dietary myo-inositol. Diabetes. 1991 Nov;40(11):1545–1554. doi: 10.2337/diab.40.11.1545. [DOI] [PubMed] [Google Scholar]
  53. Kobayashi E., Nakano H., Morimoto M., Tamaoki T. Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1989 Mar 15;159(2):548–553. doi: 10.1016/0006-291x(89)90028-4. [DOI] [PubMed] [Google Scholar]
  54. Kraft A. S., Anderson W. B. Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature. 1983 Feb 17;301(5901):621–623. doi: 10.1038/301621a0. [DOI] [PubMed] [Google Scholar]
  55. Lapetina E. G., Reep B., Ganong B. R., Bell R. M. Exogenous sn-1,2-diacylglycerols containing saturated fatty acids function as bioregulators of protein kinase C in human platelets. J Biol Chem. 1985 Feb 10;260(3):1358–1361. [PubMed] [Google Scholar]
  56. Lattimer S. A., Sima A. A., Greene D. A. In vitro correction of impaired Na+-K+-ATPase in diabetic nerve by protein kinase C agonists. Am J Physiol. 1989 Feb;256(2 Pt 1):E264–E269. doi: 10.1152/ajpendo.1989.256.2.E264. [DOI] [PubMed] [Google Scholar]
  57. Louis J. C., Revel M. O., Zwiller J. Activation of soluble guanylate cyclase through phosphorylation by protein kinase C in intact PC12 cells. Biochim Biophys Acta. 1993 Jun 30;1177(3):299–306. doi: 10.1016/0167-4889(93)90126-a. [DOI] [PubMed] [Google Scholar]
  58. Low P. A., Tuck R. R. Effects of changes of blood pressure, respiratory acidosis and hypoxia on blood flow in the sciatic nerve of the rat. J Physiol. 1984 Feb;347:513–524. doi: 10.1113/jphysiol.1984.sp015079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. McKinney M., Bolden C., Smith C., Johnson A., Richelson E. Selective blockade of receptor-mediated cyclic GMP formation in N1E-115 neuroblastoma cells by an inhibitor of nitric oxide synthesis. Eur J Pharmacol. 1990 Mar 13;178(1):139–140. doi: 10.1016/0014-2999(90)94807-a. [DOI] [PubMed] [Google Scholar]
  60. Mistry K. P., Beyer-Mears A., Diecke F. P. Mechanisms for D-glucose inhibition of myo-inositol influx into rat lens. Diabetes. 1993 Dec;42(12):1737–1744. doi: 10.2337/diab.42.12.1737. [DOI] [PubMed] [Google Scholar]
  61. Murthy K. S., Jin J. G., Makhlouf G. M. Inhibition of nitric oxide synthase activity in dispersed gastric muscle cells by protein kinase C. Am J Physiol. 1994 Jan;266(1 Pt 1):G161–G165. doi: 10.1152/ajpgi.1994.266.1.G161. [DOI] [PubMed] [Google Scholar]
  62. Nakamura J., Del Monte M. A., Shewach D., Lattimer S. A., Greene D. A. Inhibition of phosphatidylinositol synthase by glucose in human retinal pigment epithelial cells. Am J Physiol. 1992 Apr;262(4 Pt 1):E417–E426. doi: 10.1152/ajpendo.1992.262.4.E417. [DOI] [PubMed] [Google Scholar]
  63. Nakane M., Mitchell J., Förstermann U., Murad F. Phosphorylation by calcium calmodulin-dependent protein kinase II and protein kinase C modulates the activity of nitric oxide synthase. Biochem Biophys Res Commun. 1991 Nov 14;180(3):1396–1402. doi: 10.1016/s0006-291x(05)81351-8. [DOI] [PubMed] [Google Scholar]
  64. Nakayama I., Kawahara Y., Tsuda T., Okuda M., Yokoyama M. Angiotensin II inhibits cytokine-stimulated inducible nitric oxide synthase expression in vascular smooth muscle cells. J Biol Chem. 1994 Apr 15;269(15):11628–11633. [PubMed] [Google Scholar]
  65. Nguyen B. L., Saitoh M., Ware J. A. Interaction of nitric oxide and cGMP with signal transduction in activated platelets. Am J Physiol. 1991 Oct;261(4 Pt 2):H1043–H1052. doi: 10.1152/ajpheart.1991.261.4.H1043. [DOI] [PubMed] [Google Scholar]
  66. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  67. Oyama Y., Kawasaki H., Hattori Y., Kanno M. Attenuation of endothelium-dependent relaxation in aorta from diabetic rats. Eur J Pharmacol. 1986 Dec 2;132(1):75–78. doi: 10.1016/0014-2999(86)90013-0. [DOI] [PubMed] [Google Scholar]
  68. Påhlman S., Meyerson G., Lindgren E., Schalling M., Johansson I. Insulin-like growth factor I shifts from promoting cell division to potentiating maturation during neuronal differentiation. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):9994–9998. doi: 10.1073/pnas.88.22.9994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Rodriguez-Pena A., Rozengurt E. Disappearance of Ca2+-sensitive, phospholipid-dependent protein kinase activity in phorbol ester-treated 3T3 cells. Biochem Biophys Res Commun. 1984 May 16;120(3):1053–1059. doi: 10.1016/s0006-291x(84)80213-2. [DOI] [PubMed] [Google Scholar]
  70. Ross R. A., Spengler B. A., Biedler J. L. Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst. 1983 Oct;71(4):741–747. [PubMed] [Google Scholar]
  71. Schmidt H. H., Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. doi: 10.1016/0092-8674(94)90267-4. [DOI] [PubMed] [Google Scholar]
  72. Seifert W., Rudland P. S. Cyclic nucleotides and growth control in cultured mouse cells: correlation of changes in intracellular 3':5' cGMP concentration with a specific phase of the cell cycle. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4920–4924. doi: 10.1073/pnas.71.12.4920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Sessa W. C. The nitric oxide synthase family of proteins. J Vasc Res. 1994 May-Jun;31(3):131–143. doi: 10.1159/000159039. [DOI] [PubMed] [Google Scholar]
  74. Severn A., Wakelam M. J., Liew F. Y. The role of protein kinase C in the induction of nitric oxide synthesis by murine macrophages. Biochem Biophys Res Commun. 1992 Nov 16;188(3):997–1002. doi: 10.1016/0006-291x(92)91330-s. [DOI] [PubMed] [Google Scholar]
  75. Shiba T., Inoguchi T., Sportsman J. R., Heath W. F., Bursell S., King G. L. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Physiol. 1993 Nov;265(5 Pt 1):E783–E793. doi: 10.1152/ajpendo.1993.265.5.E783. [DOI] [PubMed] [Google Scholar]
  76. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  77. Stevens M. J., Dananberg J., Feldman E. L., Lattimer S. A., Kamijo M., Thomas T. P., Shindo H., Sima A. A., Greene D. A. The linked roles of nitric oxide, aldose reductase and, (Na+,K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. J Clin Invest. 1994 Aug;94(2):853–859. doi: 10.1172/JCI117406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Stevens M. J., Feldman E. L., Greene D. A. The aetiology of diabetic neuropathy: the combined roles of metabolic and vascular defects. Diabet Med. 1995 Jul;12(7):566–579. doi: 10.1111/j.1464-5491.1995.tb00544.x. [DOI] [PubMed] [Google Scholar]
  79. Stevens M. J., Henry D. N., Thomas T. P., Killen P. D., Greene D. A. Aldose reductase gene expression and osmotic dysregulation in cultured human retinal pigment epithelial cells. Am J Physiol. 1993 Sep;265(3 Pt 1):E428–E438. doi: 10.1152/ajpendo.1993.265.3.E428. [DOI] [PubMed] [Google Scholar]
  80. Tesfamariam B., Brown M. L., Cohen R. A. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest. 1991 May;87(5):1643–1648. doi: 10.1172/JCI115179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Thomas T. P., Feldman E. L., Nakamura J., Kato K., Lien M., Stevens M. J., Greene D. A. Ambient glucose and aldose reductase-induced myo-inositol depletion modulate basal and carbachol-stimulated inositol phospholipid metabolism and diacylglycerol accumulation in human retinal pigment epithelial cells in culture. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9712–9716. doi: 10.1073/pnas.90.20.9712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Thomas T. P., Gopalakrishna R., Anderson W. B. Hormone- and tumor promoter-induced activation or membrane association of protein kinase C in intact cells. Methods Enzymol. 1987;141:399–411. doi: 10.1016/0076-6879(87)41086-0. [DOI] [PubMed] [Google Scholar]
  83. Wang Y. X., Brooks D. P., Edwards R. M. Attenuated glomerular cGMP production and renal vasodilation in streptozotocin-induced diabetic rats. Am J Physiol. 1993 May;264(5 Pt 2):R952–R956. doi: 10.1152/ajpregu.1993.264.5.R952. [DOI] [PubMed] [Google Scholar]
  84. Williams B., Schrier R. W. Characterization of glucose-induced in situ protein kinase C activity in cultured vascular smooth muscle cells. Diabetes. 1992 Nov;41(11):1464–1472. doi: 10.2337/diab.41.11.1464. [DOI] [PubMed] [Google Scholar]
  85. Winegrad A. I. Banting lecture 1986. Does a common mechanism induce the diverse complications of diabetes? Diabetes. 1987 Mar;36(3):396–406. doi: 10.2337/diab.36.3.396. [DOI] [PubMed] [Google Scholar]
  86. Wolf B. A., Williamson J. R., Easom R. A., Chang K., Sherman W. R., Turk J. Diacylglycerol accumulation and microvascular abnormalities induced by elevated glucose levels. J Clin Invest. 1991 Jan;87(1):31–38. doi: 10.1172/JCI114988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Yasuda I., Kishimoto A., Tanaka S., Tominaga M., Sakurai A., Nishizuka Y. A synthetic peptide substrate for selective assay of protein kinase C. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1220–1227. doi: 10.1016/0006-291x(90)90996-z. [DOI] [PubMed] [Google Scholar]
  88. Yorek M. A., Dunlap J. A., Ginsberg B. H. myo-Inositol metabolism in 41A3 neuroblastoma cells: effects of high glucose and sorbitol levels. J Neurochem. 1987 Jan;48(1):53–61. doi: 10.1111/j.1471-4159.1987.tb13126.x. [DOI] [PubMed] [Google Scholar]
  89. Yorek M. A., Dunlap J. A., Leeney E. M. Effect of galactose and glucose levels and sorbinil treatment on myo-inositol metabolism and Na+-K+ pump activity in cultured neuroblastoma cells. Diabetes. 1989 Aug;38(8):996–1004. doi: 10.2337/diab.38.8.996. [DOI] [PubMed] [Google Scholar]
  90. Zhang J., Dawson V. L., Dawson T. M., Snyder S. H. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science. 1994 Feb 4;263(5147):687–689. doi: 10.1126/science.8080500. [DOI] [PubMed] [Google Scholar]
  91. Zhu X., Eichberg J. 1,2-diacylglycerol content and its arachidonyl-containing molecular species are reduced in sciatic nerve from streptozotocin-induced diabetic rats. J Neurochem. 1990 Sep;55(3):1087–1090. doi: 10.1111/j.1471-4159.1990.tb04604.x. [DOI] [PubMed] [Google Scholar]
  92. Zhu X., Eichberg J. A myo-inositol pool utilized for phosphatidylinositol synthesis is depleted in sciatic nerve from rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9818–9822. doi: 10.1073/pnas.87.24.9818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. de la Rubia G., Oliver F. J., Inoguchi T., King G. L. Induction of resistance to endothelin-1's biochemical actions by elevated glucose levels in retinal pericytes. Diabetes. 1992 Dec;41(12):1533–1539. doi: 10.2337/diabetes.41.12.1533. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES