Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Feb 1;97(3):814–825. doi: 10.1172/JCI118481

Differentiated vascular myocytes: are they involved in neointimal formation?

B Holifield 1, T Helgason 1, S Jemelka 1, A Taylor 1, S Navran 1, J Allen 1, C Seidel 1
PMCID: PMC507120  PMID: 8609239

Abstract

The role of differentiated vascular myocytes are neointimal formation in canine carotid artery was investigated. Using antibodies and cDNA probes, cells were characterized in situ and after isolation. In situ characterization indicated the majority of medial cells expressed both smooth muscle myosin and alpha actin but many cells were negative to these markers. All adventitial cells were negative for these proteins. The muscle protein-positive cells were designated differentiated, vascular myocytes (VSMC). The others were designated type 2 cells. Sequential enzyme digestion from lumenal surface yielded VSMC ( > 90%) while digestions from the adventitial surface yielded type 2 cells ( > 90%). VSMC were viable in culture but did not spread, proliferate, or alter expression of muscle proteins. Type 2 cells proliferated and increased their expression of muscle actin but did not express muscle myosin. Characterization of neointimal cells from injured carotid arteries indicated they were morphologically and immunologically identical to cultured type 2 cells. We concluded that: (a) canine carotid artery media consists of a heterogeneous cell population: (b) serum does not stimulate isolated VSMC to undergo phenotypic modulation or proliferate: and (c) type 2 cells may be responsible for neointimal formation because they proliferate and acquire a phenotype identical to in situ neointimal cells.

Full Text

The Full Text of this article is available as a PDF (6.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. C., Navran S. S., Seidel C. L., Dennison D. K., Amann J. M., Jemelka S. K. Intracellular Na+ regulation of Na+ pump sites in cultured vascular smooth muscle cells. Am J Physiol. 1989 Apr;256(4 Pt 1):C786–C792. doi: 10.1152/ajpcell.1989.256.4.C786. [DOI] [PubMed] [Google Scholar]
  2. Babij P., Kawamoto S., White S., Adelstein R. S., Periasamy M. Differential expression of SM1 and SM2 myosin isoforms in cultured vascular smooth muscle. Am J Physiol. 1992 Mar;262(3 Pt 1):C607–C613. doi: 10.1152/ajpcell.1992.262.3.C607. [DOI] [PubMed] [Google Scholar]
  3. Björkerud S., Gustavsson K., Hasselgren M. In vitro cultivation of rabbit aortic media and the development of the cultures in relation to cellular heterogeneity. Acta Pathol Microbiol Immunol Scand A. 1984 Mar;92(2):113–124. doi: 10.1111/j.1699-0463.1984.tb04385.x. [DOI] [PubMed] [Google Scholar]
  4. Björkerud S. Separation of arterial smooth muscle cell subpopulations with different growth patterns. Acta Pathol Microbiol Immunol Scand A. 1984 Sep;92(5):293–301. doi: 10.1111/j.1699-0463.1984.tb04407.x. [DOI] [PubMed] [Google Scholar]
  5. Bochaton-Piallat M. L., Gabbiani F., Ropraz P., Gabbiani G. Cultured aortic smooth muscle cells from newborn and adult rats show distinct cytoskeletal features. Differentiation. 1992 Apr;49(3):175–185. doi: 10.1111/j.1432-0436.1992.tb00665.x. [DOI] [PubMed] [Google Scholar]
  6. Campbell G. R., Campbell J. H., Manderson J. A., Horrigan S., Rennick R. E. Arterial smooth muscle. A multifunctional mesenchymal cell. Arch Pathol Lab Med. 1988 Oct;112(10):977–986. [PubMed] [Google Scholar]
  7. Frid M. G., Moiseeva E. P., Stenmark K. R. Multiple phenotypically distinct smooth muscle cell populations exist in the adult and developing bovine pulmonary arterial media in vivo. Circ Res. 1994 Oct;75(4):669–681. doi: 10.1161/01.res.75.4.669. [DOI] [PubMed] [Google Scholar]
  8. Fujita H., Shimokado K., Yutani C., Takaichi S., Masuda J., Ogata J. Human neonatal and adult vascular smooth muscle cells in culture. Exp Mol Pathol. 1993 Feb;58(1):25–39. doi: 10.1006/exmp.1993.1003. [DOI] [PubMed] [Google Scholar]
  9. Gordon D., Reidy M. A., Benditt E. P., Schwartz S. M. Cell proliferation in human coronary arteries. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4600–4604. doi: 10.1073/pnas.87.12.4600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gorski D. H., LePage D. F., Patel C. V., Copeland N. G., Jenkins N. A., Walsh K. Molecular cloning of a diverged homeobox gene that is rapidly down-regulated during the G0/G1 transition in vascular smooth muscle cells. Mol Cell Biol. 1993 Jun;13(6):3722–3733. doi: 10.1128/mcb.13.6.3722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Issler R. W. The arterial medial cell, smooth muscle or multifunctional mesenchyme? J Atheroscler Res. 1968 Mar-Apr;8(2):201–213. doi: 10.1016/s0368-1319(68)80056-0. [DOI] [PubMed] [Google Scholar]
  12. Kocher O., Skalli O., Bloom W. S., Gabbiani G. Cytoskeleton of rat aortic smooth muscle cells. Normal conditions and experimental intimal thickening. Lab Invest. 1984 Jun;50(6):645–652. [PubMed] [Google Scholar]
  13. Lauper N. T., Unni K. K., Kottke B. A., Titus J. L. Anatomy and histology of aorta of White Carneau pigeon. Lab Invest. 1975 Apr;32(4):536–551. [PubMed] [Google Scholar]
  14. Lemire J. M., Covin C. W., White S., Giachelli C. M., Schwartz S. M. Characterization of cloned aortic smooth muscle cells from young rats. Am J Pathol. 1994 May;144(5):1068–1081. [PMC free article] [PubMed] [Google Scholar]
  15. Majesky M. W., Schwartz S. M. Smooth muscle diversity in arterial wound repair. Toxicol Pathol. 1990;18(4 Pt 1):554–559. [PubMed] [Google Scholar]
  16. Moss N. S., Benditt E. P. Spontaneous and experimentally induced arterial lesions. I. An ultrastructural survey of the normal chicken aorta. Lab Invest. 1970 Feb;22(2):166–183. [PubMed] [Google Scholar]
  17. Nagai R., Kuro-o M., Babij P., Periasamy M. Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J Biol Chem. 1989 Jun 15;264(17):9734–9737. [PubMed] [Google Scholar]
  18. Nishida W., Kitami Y., Hiwada K. cDNA cloning and mRNA expression of calponin and SM22 in rat aorta smooth muscle cells. Gene. 1993 Aug 25;130(2):297–302. doi: 10.1016/0378-1119(93)90435-6. [DOI] [PubMed] [Google Scholar]
  19. PEASE D. C., PAULE W. J. Electron microscopy of elastic arteries; the thoracic aorta of the rat. J Ultrastruct Res. 1960 Jun;3:469–483. doi: 10.1016/s0022-5320(60)90023-x. [DOI] [PubMed] [Google Scholar]
  20. Pressley T. A. Phylogenetic conservation of isoform-specific regions within alpha-subunit of Na(+)-K(+)-ATPase. Am J Physiol. 1992 Mar;262(3 Pt 1):C743–C751. doi: 10.1152/ajpcell.1992.262.3.C743. [DOI] [PubMed] [Google Scholar]
  21. Ross R., Glomset J. A. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973 Jun 29;180(4093):1332–1339. doi: 10.1126/science.180.4093.1332. [DOI] [PubMed] [Google Scholar]
  22. Rovner A. S., Murphy R. A., Owens G. K. Expression of smooth muscle and nonmuscle myosin heavy chains in cultured vascular smooth muscle cells. J Biol Chem. 1986 Nov 5;261(31):14740–14745. [PubMed] [Google Scholar]
  23. Schildmeyer L. A., Seidel C. L. Quantitative and qualitative heterogeneity in smooth muscle myosin heavy chains. Life Sci. 1989;45(18):1617–1625. doi: 10.1016/0024-3205(89)90271-3. [DOI] [PubMed] [Google Scholar]
  24. Schwartz S. M., Foy L., Bowen-Pope D. F., Ross R. Derivation and properties of platelet-derived growth factor-independent rat smooth muscle cells. Am J Pathol. 1990 Jun;136(6):1417–1428. [PMC free article] [PubMed] [Google Scholar]
  25. Seidel C. L., White V., Wallace C., Amann J., Dennison D., Schildmeyer L. A., Vu B., Allen J. C., Navarro L., Eskin S. Effect of seeding density and time in culture on vascular smooth muscle cell proteins. Am J Physiol. 1988 Feb;254(2 Pt 1):C235–C242. doi: 10.1152/ajpcell.1988.254.2.C235. [DOI] [PubMed] [Google Scholar]
  26. Shanahan C. M., Weissberg P. L., Metcalfe J. C. Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells. Circ Res. 1993 Jul;73(1):193–204. doi: 10.1161/01.res.73.1.193. [DOI] [PubMed] [Google Scholar]
  27. Skalli O., Bloom W. S., Ropraz P., Azzarone B., Gabbiani G. Cytoskeletal remodeling of rat aortic smooth muscle cells in vitro: relationships to culture conditions and analogies to in vivo situations. J Submicrosc Cytol. 1986 Jul;18(3):481–493. [PubMed] [Google Scholar]
  28. Skalli O., Ropraz P., Trzeciak A., Benzonana G., Gillessen D., Gabbiani G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol. 1986 Dec;103(6 Pt 2):2787–2796. doi: 10.1083/jcb.103.6.2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Warshaw D. M., Szarek J. L., Hubbard M. S., Evans J. N. Pharmacology and force development of single freshly isolated bovine carotid artery smooth muscle cells. Circ Res. 1986 Mar;58(3):399–406. doi: 10.1161/01.res.58.3.399. [DOI] [PubMed] [Google Scholar]
  30. Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
  31. Wohrley J. D., Frid M. G., Moiseeva E. P., Orton E. C., Belknap J. K., Stenmark K. R. Hypoxia selectively induces proliferation in a specific subpopulation of smooth muscle cells in the bovine neonatal pulmonary arterial media. J Clin Invest. 1995 Jul;96(1):273–281. doi: 10.1172/JCI118031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zanellato A. M., Borrione A. C., Giuriato L., Tonello M., Scannapieco G., Pauletto P., Sartore S. Myosin isoforms and cell heterogeneity in vascular smooth muscle. I. Developing and adult bovine aorta. Dev Biol. 1990 Oct;141(2):431–446. doi: 10.1016/0012-1606(90)90398-3. [DOI] [PubMed] [Google Scholar]
  33. Zanellato A. M., Borrione A. C., Tonello M., Scannapieco G., Pauletto P., Sartore S. Myosin isoform expression and smooth muscle cell heterogeneity in normal and atherosclerotic rabbit aorta. Arteriosclerosis. 1990 Nov-Dec;10(6):996–1009. doi: 10.1161/01.atv.10.6.996. [DOI] [PubMed] [Google Scholar]
  34. van Neck J. W., Medina J. J., Onnekink C., van der Ven P. F., Bloemers H. P., Schwartz S. M. Basic fibroblast growth factor has a differential effect on MyoD conversion of cultured aortic smooth muscle cells from newborn and adult rats. Am J Pathol. 1993 Jul;143(1):269–282. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES