Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Feb 1;97(3):833–838. doi: 10.1172/JCI118483

Chronic cardiac rejection in the LEW to F344 rat model. Blockade of CD28-B7 costimulation by CTLA4Ig modulates T cell and macrophage activation and attenuates arteriosclerosis.

M E Russell 1, W W Hancock 1, E Akalin 1, A F Wallace 1, T Glysing-Jensen 1, T A Willett 1, M H Sayegh 1
PMCID: PMC507122  PMID: 8609241

Abstract

CTLA4Ig, a fusion protein that blocks CD28-B7 costimulation, was studied in a LEW to F344 rat model of chronic cardiac rejection. In rats treated with a single dose of CTLA4Ig (0.5 mg intraperitoneally) 2 d after transplantation, allografts survived significantly longer ( > 70 d in 64%) than in untreated controls or rats treated with control Ig (all rejected within 25 d). Only 25% of grafts from rats treated with a single, high dose of cyclosporine A (25 mg/kg, 2 d after transplantation) survived longer than 70 d. Reverse transcriptase PCR and immunostaining analyses of tissue from 75-d, CTLA4Ig-treated allografts showed reduced expression of the T cell factor IFN-gamma and macrophage activation factors monocyte chemoattractant protein-1, inducible nitric oxide synthase, and galactose/N-acetylgalactosamine macrophage lectin, as well as TGF-beta. Grafts from longterm survivors ( > 120 d) treated with CTLA4Ig showed significant reductions in the frequency and severity of arteriosclerosis in comparison with cyclosporine A-treated rats. Thus, T cell activation is a proximal event in the cascade that culminates in the arteriosclerosis of chronic rejection. Strategies for blocking T cell costimulation may help prevent chronic rejection in clinical transplantation.

Full Text

The Full Text of this article is available as a PDF (765.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. H., Tilney N. L., Collins J. J., Jr, Karnovsky M. J. Experimental graft arteriosclerosis. I. The Lewis-to-F-344 allograft model. Transplantation. 1992 May;53(5):1115–1119. [PubMed] [Google Scholar]
  2. Adams D. H., Wyner L. R., Karnovsky M. J. Experimental graft arteriosclerosis. II. Immunocytochemical analysis of lesion development. Transplantation. 1993 Oct;56(4):794–799. doi: 10.1097/00007890-199310000-00004. [DOI] [PubMed] [Google Scholar]
  3. Boussiotis V. A., Gribben J. G., Freeman G. J., Nadler L. M. Blockade of the CD28 co-stimulatory pathway: a means to induce tolerance. Curr Opin Immunol. 1994 Oct;6(5):797–807. doi: 10.1016/0952-7915(94)90087-6. [DOI] [PubMed] [Google Scholar]
  4. Cramer D. V., Wu G. D., Chapman F. A., Cajulis E., Wang H. K., Makowka L. Lymphocytic subsets and histopathologic changes associated with the development of heart transplant arteriosclerosis. J Heart Lung Transplant. 1992 May-Jun;11(3 Pt 1):458–466. [PubMed] [Google Scholar]
  5. Johnson D. E., Gao S. Z., Schroeder J. S., DeCampli W. M., Billingham M. E. The spectrum of coronary artery pathologic findings in human cardiac allografts. J Heart Transplant. 1989 Sep-Oct;8(5):349–359. [PubMed] [Google Scholar]
  6. Lemström K. B., Aho P. T., Bruggeman C. A., Häyry P. J. Cytomegalovirus infection enhances mRNA expression of platelet-derived growth factor-BB and transforming growth factor-beta 1 in rat aortic allografts. Possible mechanism for cytomegalovirus-enhanced graft arteriosclerosis. Arterioscler Thromb. 1994 Dec;14(12):2043–2052. doi: 10.1161/01.atv.14.12.2043. [DOI] [PubMed] [Google Scholar]
  7. Lenschow D. J., Zeng Y., Thistlethwaite J. R., Montag A., Brady W., Gibson M. G., Linsley P. S., Bluestone J. A. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science. 1992 Aug 7;257(5071):789–792. doi: 10.1126/science.1323143. [DOI] [PubMed] [Google Scholar]
  8. Lin H., Bolling S. F., Linsley P. S., Wei R. Q., Gordon D., Thompson C. B., Turka L. A. Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion. J Exp Med. 1993 Nov 1;178(5):1801–1806. doi: 10.1084/jem.178.5.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Linsley P. S., Brady W., Urnes M., Grosmaire L. S., Damle N. K., Ledbetter J. A. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991 Sep 1;174(3):561–569. doi: 10.1084/jem.174.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Linsley P. S., Ledbetter J. A. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol. 1993;11:191–212. doi: 10.1146/annurev.iy.11.040193.001203. [DOI] [PubMed] [Google Scholar]
  11. Orloff M. S., DeMara E. M., Coppage M. L., Leong N., Fallon M. A., Sickel J., Zuo X. J., Prehn J., Jordan S. C. Prevention of chronic rejection and graft arteriosclerosis by tolerance induction. Transplantation. 1995 Jan 27;59(2):282–288. [PubMed] [Google Scholar]
  12. Paul L. C., Fellström B. Chronic vascular rejection of the heart and the kidney--have rational treatment options emerged? Transplantation. 1992 Jun;53(6):1169–1179. doi: 10.1097/00007890-199206000-00001. [DOI] [PubMed] [Google Scholar]
  13. Pearson T. C., Alexander D. Z., Winn K. J., Linsley P. S., Lowry R. P., Larsen C. P. Transplantation tolerance induced by CTLA4-Ig. Transplantation. 1994 Jun 27;57(12):1701–1706. [PubMed] [Google Scholar]
  14. Qian S. W., Kondaiah P., Roberts A. B., Sporn M. B. cDNA cloning by PCR of rat transforming growth factor beta-1. Nucleic Acids Res. 1990 May 25;18(10):3059–3059. doi: 10.1093/nar/18.10.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Russell M. E., Adams D. H., Wyner L. R., Yamashita Y., Halnon N. J., Karnovsky M. J. Early and persistent induction of monocyte chemoattractant protein 1 in rat cardiac allografts. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6086–6090. doi: 10.1073/pnas.90.13.6086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Russell M. E., Fujita M., Masek M. A., Rowan R. A., Billingham M. E. Cardiac graft vascular disease. Nonselective involvement of large and small vessels. Transplantation. 1993 Dec;56(6):1599–1601. [PubMed] [Google Scholar]
  17. Russell M. E., Utans U., Wallace A. F., Liang P., Arceci R. J., Karnovsky M. J., Wyner L. R., Yamashita Y., Tarn C. Identification and upregulation of galactose/N-acetylgalactosamine macrophage lectin in rat cardiac allografts with arteriosclerosis. J Clin Invest. 1994 Aug;94(2):722–730. doi: 10.1172/JCI117391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Russell M. E., Wallace A. F., Hancock W. W., Sayegh M. H., Adams D. H., Sibinga N. E., Wyner L. R., Karnovsky M. J. Upregulation of cytokines associated with macrophage activation in the Lewis-to-F344 rat transplantation model of chronic cardiac rejection. Transplantation. 1995 Feb 27;59(4):572–578. [PubMed] [Google Scholar]
  19. Russell M. E., Wallace A. F., Wyner L. R., Newell J. B., Karnovsky M. J. Upregulation and modulation of inducible nitric oxide synthase in rat cardiac allografts with chronic rejection and transplant arteriosclerosis. Circulation. 1995 Aug 1;92(3):457–464. doi: 10.1161/01.cir.92.3.457. [DOI] [PubMed] [Google Scholar]
  20. Sayegh M. H., Akalin E., Hancock W. W., Russell M. E., Carpenter C. B., Linsley P. S., Turka L. A. CD28-B7 blockade after alloantigenic challenge in vivo inhibits Th1 cytokines but spares Th2. J Exp Med. 1995 May 1;181(5):1869–1874. doi: 10.1084/jem.181.5.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sayegh M. H., Turka L. A. T cell costimulatory pathways: promising novel targets for immunosuppression and tolerance induction. J Am Soc Nephrol. 1995 Oct;6(4):1143–1150. doi: 10.1681/ASN.V641143. [DOI] [PubMed] [Google Scholar]
  22. Shin Y. T., Adams D. H., Wyner L. R., Akalin E., Sayegh M. H., Karnovsky M. J. Intrathymic tolerance in the Lewis-to-F344 chronic cardiac allograft rejection model. Transplantation. 1995 Jun 27;59(12):1647–1653. doi: 10.1097/00007890-199506270-00001. [DOI] [PubMed] [Google Scholar]
  23. Tullius S. G., Tilney N. L. Both alloantigen-dependent and -independent factors influence chronic allograft rejection. Transplantation. 1995 Feb 15;59(3):313–318. [PubMed] [Google Scholar]
  24. Watschinger B., Sayegh M. H., Hancock W. W., Russell M. E. Up-regulation of endothelin-1 mRNA and peptide expression in rat cardiac allografts with rejection and arteriosclerosis. Am J Pathol. 1995 May;146(5):1065–1072. [PMC free article] [PubMed] [Google Scholar]
  25. Zhao X. M., Frist W. H., Yeoh T. K., Miller G. G. Expression of cytokine genes in human cardiac allografts: correlation of IL-6 and transforming growth factor-beta (TGF-beta) with histological rejection. Clin Exp Immunol. 1993 Sep;93(3):448–451. doi: 10.1111/j.1365-2249.1993.tb08199.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES