Abstract
Oxidation of lipids and lipoproteins by macrophages is an important event during atherogenesis. Activation of monocytic cells by zymosan and other agonists results in the release of multiple oxidant species and consequent oxidation of LDL. We now show evidence that ceruloplasmin, a copper-containing acute phase reactant, is secreted by zymosan-activated U937 monocytic cells, and that the protein has an important role in LDL oxidation by these cells. In one approach, ceruloplasmin has been shown to exhibit oxidant activity under the appropriate conditions. Exogenous addition of purified human ceruloplasmin stimulates U937 cell oxidation of LDL to nearly the same extent as activation by zymosan. In contrast to previous cell-free experiments (Ehrenwald, E., G.M. Chisom, and P.L. Fox. 1994. Intact human ceruloplasmin oxidatively modifies low density lipoprotein. J. Clin. Invest. 93:1493-1501.) in which ceruloplasmin by itself (in PBS) oxidizes LDL, under the conditions of the current experiments (in RPMI 1640 medium) ceruloplasmin only oxidizes LDL in the presence of cells; the mechanism by which cells overcome the inhibition by medium components has not been ascertained. As further evidence for a role of ceruloplasmin, activation of U937 cells with zymosan induces ceruloplasmin mRNA and ceruloplasmin protein synthesis after a 5-6 h lag that is consistent with that preceding LDL oxidation. Finally, neutralization by a highly specific polyclonal antibody to human ceruloplasmin inhibits LDL oxidation by at least 65%. Moreover, multiple antisense oligodeoxynucleotides targeted to different regions of the ceruloplasmin mRNA block LDL oxidation by up to 95%. The specific action of the antisense oligonucleotides has been verified by showing inhibition of ceruloplasmin synthesis and by the ability of exogenous ceruloplasmin to overcome the inhibition. In summary, these results are consistent with a mechanism in which cell-derived ceruloplasmin participates in oxidation of LDL by U937 monocytic cells. The data also show that cellular factors in addition to ceruloplasmin, possibly active oxygen species and/or lipoxygenases, are essential and act synergistically with ceruloplasmin to oxidize LDL.
Full Text
The Full Text of this article is available as a PDF (301.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Timimi D. J., Dormandy T. L. The inhibition of lipid autoxidation by human caeruloplasmin. Biochem J. 1977 Nov 15;168(2):283–288. doi: 10.1042/bj1680283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aviram M., Rosenblat M. Macrophage-mediated oxidation of extracellular low density lipoprotein requires an initial binding of the lipoprotein to its receptor. J Lipid Res. 1994 Mar;35(3):385–398. [PubMed] [Google Scholar]
- Babbs C. F. Oxygen radicals in ulcerative colitis. Free Radic Biol Med. 1992;13(2):169–181. doi: 10.1016/0891-5849(92)90079-v. [DOI] [PubMed] [Google Scholar]
- Cathcart M. K., Chisolm G. M., 3rd, McNally A. K., Morel D. W. Oxidative modification of low density lipoprotein (LDL) by activated human monocytes and the cell lines U937 and HL60. In Vitro Cell Dev Biol. 1988 Oct;24(10):1001–1008. doi: 10.1007/BF02620873. [DOI] [PubMed] [Google Scholar]
- Cathcart M. K., Li Q., Chisolm G. M., 3rd Lipoprotein receptor interactions are not required for monocyte oxidation of LDL. J Lipid Res. 1995 Sep;36(9):1857–1865. [PubMed] [Google Scholar]
- Cathcart M. K., McNally A. K., Morel D. W., Chisolm G. M., 3rd Superoxide anion participation in human monocyte-mediated oxidation of low-density lipoprotein and conversion of low-density lipoprotein to a cytotoxin. J Immunol. 1989 Mar 15;142(6):1963–1969. [PubMed] [Google Scholar]
- Cathcart M. K., Morel D. W., Chisolm G. M., 3rd Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J Leukoc Biol. 1985 Aug;38(2):341–350. doi: 10.1002/jlb.38.2.341. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Cousins R. J. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev. 1985 Apr;65(2):238–309. doi: 10.1152/physrev.1985.65.2.238. [DOI] [PubMed] [Google Scholar]
- Craig W. Y., Poulin S. E., Palomaki G. E., Neveux L. M., Ritchie R. F., Ledue T. B. Oxidation-related analytes and lipid and lipoprotein concentrations in healthy subjects. Arterioscler Thromb Vasc Biol. 1995 Jun;15(6):733–739. doi: 10.1161/01.atv.15.6.733. [DOI] [PubMed] [Google Scholar]
- Darley-Usmar V. M., Hogg N., O'Leary V. J., Wilson M. T., Moncada S. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun. 1992;17(1):9–20. doi: 10.3109/10715769209061085. [DOI] [PubMed] [Google Scholar]
- Ehrenwald E., Chisolm G. M., Fox P. L. Intact human ceruloplasmin oxidatively modifies low density lipoprotein. J Clin Invest. 1994 Apr;93(4):1493–1501. doi: 10.1172/JCI117127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrenwald E., Fox P. L. Isolation of nonlabile human ceruloplasmin by chromatographic removal of a plasma metalloproteinase. Arch Biochem Biophys. 1994 Mar;309(2):392–395. doi: 10.1006/abbi.1994.1129. [DOI] [PubMed] [Google Scholar]
- Fleming R. E., Gitlin J. D. Primary structure of rat ceruloplasmin and analysis of tissue-specific gene expression during development. J Biol Chem. 1990 May 5;265(13):7701–7707. [PubMed] [Google Scholar]
- Fleming R. E., Whitman I. P., Gitlin J. D. Induction of ceruloplasmin gene expression in rat lung during inflammation and hyperoxia. Am J Physiol. 1991 Feb;260(2 Pt 1):L68–L74. doi: 10.1152/ajplung.1991.260.2.L68. [DOI] [PubMed] [Google Scholar]
- Folcik V. A., Cathcart M. K. Assessment of 5-lipoxygenase involvement in human monocyte-mediated LDL oxidation. J Lipid Res. 1993 Jan;34(1):69–79. [PubMed] [Google Scholar]
- Fox P. L., Mukhopadhyay C., Ehrenwald E. Structure, oxidant activity, and cardiovascular mechanisms of human ceruloplasmin. Life Sci. 1995;56(21):1749–1758. doi: 10.1016/0024-3205(95)00146-w. [DOI] [PubMed] [Google Scholar]
- Gitlin J. D. Transcriptional regulation of ceruloplasmin gene expression during inflammation. J Biol Chem. 1988 May 5;263(13):6281–6287. [PubMed] [Google Scholar]
- Heinecke J. W., Rosen H., Suzuki L. A., Chait A. The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. J Biol Chem. 1987 Jul 25;262(21):10098–10103. [PubMed] [Google Scholar]
- Hiramatsu K., Rosen H., Heinecke J. W., Wolfbauer G., Chait A. Superoxide initiates oxidation of low density lipoprotein by human monocytes. Arteriosclerosis. 1987 Jan-Feb;7(1):55–60. doi: 10.1161/01.atv.7.1.55. [DOI] [PubMed] [Google Scholar]
- Hollander W., Colombo M. A., Kirkpatrick B., Paddock J. Soluble proteins in the human atherosclerotic plaque. With spectral reference to immunoglobulins, C3-complement component, alpha 1-antitrypsin and alpha 2-macroglobulin. Atherosclerosis. 1979 Dec;34(4):391–405. doi: 10.1016/0021-9150(79)90064-9. [DOI] [PubMed] [Google Scholar]
- Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jessup W., Simpson J. A., Dean R. T. Does superoxide radical have a role in macrophage-mediated oxidative modification of LDL? Atherosclerosis. 1993 Feb;99(1):107–120. doi: 10.1016/0021-9150(93)90056-z. [DOI] [PubMed] [Google Scholar]
- Kataoka M., Tavassoli M. Identification of ceruloplasmin receptors on the surface of human blood monocytes, granulocytes, and lymphocytes. Exp Hematol. 1985 Sep;13(8):806–810. [PubMed] [Google Scholar]
- Katsura M., Forster L. A., Ferns G. A., Anggård E. E. Oxidative modification of low-density lipoprotein by human polymorphonuclear leucocytes to a form recognised by the lipoprotein scavenger pathway. Biochim Biophys Acta. 1994 Jul 14;1213(2):231–237. doi: 10.1016/0005-2760(94)90031-0. [DOI] [PubMed] [Google Scholar]
- Kosugi K., Morel D. W., DiCorleto P. E., Chisolm G. M. Toxicity of oxidized low-density lipoprotein to cultured fibroblasts is selective for S phase of the cell cycle. J Cell Physiol. 1987 Mar;130(3):311–320. doi: 10.1002/jcp.1041300302. [DOI] [PubMed] [Google Scholar]
- Lamb D. J., Leake D. S. Acidic pH enables caeruloplasmin to catalyse the modification of low-density lipoprotein. FEBS Lett. 1994 Jan 31;338(2):122–126. doi: 10.1016/0014-5793(94)80348-x. [DOI] [PubMed] [Google Scholar]
- Li Q., Cathcart M. K. Protein kinase C activity is required for lipid oxidation of low density lipoprotein by activated human monocytes. J Biol Chem. 1994 Jul 1;269(26):17508–17515. [PubMed] [Google Scholar]
- Li Q., Tallant A., Cathcart M. K. Dual Ca2+ requirement for optimal lipid peroxidation of low density lipoprotein by activated human monocytes. J Clin Invest. 1993 Apr;91(4):1499–1506. doi: 10.1172/JCI116355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindstedt K. A. Inhibition of macrophage-mediated low density lipoprotein oxidation by stimulated rat serosal mast cells. J Biol Chem. 1993 Apr 15;268(11):7741–7746. [PubMed] [Google Scholar]
- Lunec J., Blake D. R., McCleary S. J., Brailsford S., Bacon P. A. Self-perpetuating mechanisms of immunoglobulin G aggregation in rheumatoid inflammation. J Clin Invest. 1985 Dec;76(6):2084–2090. doi: 10.1172/JCI112212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch S. M., Frei B. Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein. J Lipid Res. 1993 Oct;34(10):1745–1753. [PubMed] [Google Scholar]
- McNally A. K., Chisolm G. M., 3rd, Morel D. W., Cathcart M. K. Activated human monocytes oxidize low-density lipoprotein by a lipoxygenase-dependent pathway. J Immunol. 1990 Jul 1;145(1):254–259. [PubMed] [Google Scholar]
- Milland J., Tsykin A., Thomas T., Aldred A. R., Cole T., Schreiber G. Gene expression in regenerating and acute-phase rat liver. Am J Physiol. 1990 Sep;259(3 Pt 1):G340–G347. doi: 10.1152/ajpgi.1990.259.3.G340. [DOI] [PubMed] [Google Scholar]
- Morel D. W., DiCorleto P. E., Chisolm G. M. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis. 1984 Jul-Aug;4(4):357–364. doi: 10.1161/01.atv.4.4.357. [DOI] [PubMed] [Google Scholar]
- Mänttäri M., Manninen V., Huttunen J. K., Palosuo T., Ehnholm C., Heinonen O. P., Frick M. H. Serum ferritin and ceruloplasmin as coronary risk factors. Eur Heart J. 1994 Dec;15(12):1599–1603. doi: 10.1093/oxfordjournals.eurheartj.a060440. [DOI] [PubMed] [Google Scholar]
- Nathan C. F. Secretory products of macrophages. J Clin Invest. 1987 Feb;79(2):319–326. doi: 10.1172/JCI112815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noyer M., Dwulet F. E., Hao Y. L., Putnam F. W. Purification and characterization of undegraded human ceruloplasmin. Anal Biochem. 1980 Mar 1;102(2):450–458. doi: 10.1016/0003-2697(80)90181-5. [DOI] [PubMed] [Google Scholar]
- Rankin S. M., Parthasarathy S., Steinberg D. Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res. 1991 Mar;32(3):449–456. [PubMed] [Google Scholar]
- Reunanen A., Knekt P., Aaran R. K. Serum ceruloplasmin level and the risk of myocardial infarction and stroke. Am J Epidemiol. 1992 Nov 1;136(9):1082–1090. doi: 10.1093/oxfordjournals.aje.a116573. [DOI] [PubMed] [Google Scholar]
- Robinson J. M., Badwey J. A. Production of active oxygen species by phagocytic leukocytes. Immunol Ser. 1994;60:159–178. [PubMed] [Google Scholar]
- Rydén L., Björk I. Reinvestigation of some physicochemical and chemical properties of human ceruloplasmin (ferroxidase). Biochemistry. 1976 Aug 10;15(16):3411–3417. doi: 10.1021/bi00661a003. [DOI] [PubMed] [Google Scholar]
- Samokyszyn V. M., Miller D. M., Reif D. W., Aust S. D. Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin. J Biol Chem. 1989 Jan 5;264(1):21–26. [PubMed] [Google Scholar]
- Sato M., Schilsky M. L., Stockert R. J., Morell A. G., Sternlieb I. Detection of multiple forms of human ceruloplasmin. A novel Mr 200,000 form. J Biol Chem. 1990 Feb 15;265(5):2533–2537. [PubMed] [Google Scholar]
- Schuh J., Fairclough G. F., Jr, Haschemeyer R. H. Oxygen-mediated heterogeneity of apo-low-density lipoprotein. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3173–3177. doi: 10.1073/pnas.75.7.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharonov B. P., Govorova NJu, Lyzlova S. N. A comparative study of serum proteins ability to scavenge active oxygen species: O2-. and OCl-. Biochem Int. 1988 Oct;17(4):783–790. [PubMed] [Google Scholar]
- Sparrow C. P., Olszewski J. Cellular oxidation of low density lipoprotein is caused by thiol production in media containing transition metal ions. J Lipid Res. 1993 Jul;34(7):1219–1228. [PubMed] [Google Scholar]
- Sparrow C. P., Olszewski J. Cellular oxidative modification of low density lipoprotein does not require lipoxygenases. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):128–131. doi: 10.1073/pnas.89.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sparrow C. P., Parthasarathy S., Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res. 1988 Jun;29(6):745–753. [PubMed] [Google Scholar]
- Stampfer M. J., Hennekens C. H., Manson J. E., Colditz G. A., Rosner B., Willett W. C. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med. 1993 May 20;328(20):1444–1449. doi: 10.1056/NEJM199305203282003. [DOI] [PubMed] [Google Scholar]
- Sunderman F. W., Jr, Nomoto S. Measurement of human serum ceruloplasmin by its p-phenylenediamine oxidase activity. Clin Chem. 1970 Nov;16(11):903–910. [PubMed] [Google Scholar]
- Swain J. A., Darley-Usmar V., Gutteridge J. M. Peroxynitrite releases copper from caeruloplasmin: implications for atherosclerosis. FEBS Lett. 1994 Mar 28;342(1):49–52. doi: 10.1016/0014-5793(94)80582-2. [DOI] [PubMed] [Google Scholar]
- Swain J., Gutteridge J. M. Prooxidant iron and copper, with ferroxidase and xanthine oxidase activities in human atherosclerotic material. FEBS Lett. 1995 Jul 24;368(3):513–515. doi: 10.1016/0014-5793(95)00726-p. [DOI] [PubMed] [Google Scholar]
- Winyard P. G., Hider R. C., Lunec J., Drake A. F., Blake D. R. Role of oxidative modification in the lability of ceruloplasmin. Basic Life Sci. 1988;49:341–345. doi: 10.1007/978-1-4684-5568-7_51. [DOI] [PubMed] [Google Scholar]
- Yang F., Naylor S. L., Lum J. B., Cutshaw S., McCombs J. L., Naberhaus K. H., McGill J. R., Adrian G. S., Moore C. M., Barnett D. R. Characterization, mapping, and expression of the human ceruloplasmin gene. Proc Natl Acad Sci U S A. 1986 May;83(10):3257–3261. doi: 10.1073/pnas.83.10.3257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ylä-Herttuala S. Macrophages and oxidized low density lipoproteins in the pathogenesis of atherosclerosis. Ann Med. 1991;23(5):561–567. doi: 10.3109/07853899109150518. [DOI] [PubMed] [Google Scholar]