Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Feb 15;97(4):988–995. doi: 10.1172/JCI118523

A novel heparin-dependent processing pathway for human tryptase. Autocatalysis followed by activation with dipeptidyl peptidase I.

K Sakai 1, S Ren 1, L B Schwartz 1
PMCID: PMC507145  PMID: 8613553

Abstract

Tryptase is the major protein constituent of human mast cells, where it is stored within the secretory granules as a fully active tetramer. Two tryptase genes (alpha and beta) are expressed by human mast cells at the level of mRNA and protein, each with a 30 amino acid leader sequence. Recombinant precursor forms of human alpha- and beta-tryptase were produced in a baculovirus system, purified, and used to study their processing. Monomeric beta-protryptase first is shown to be intermolecularly autoprocessed to monomeric beta-pro'tryptase at acid pH in the presence of heparin by cleavage between Arg-3 and Val-2 in the leader peptide. The precursor of alpha-tryptase has an Arg-3 to Gln-3 mutation that precludes autoprocessing. this may explain why alpha-tryptase is not stored in secretory granules, but instead is constitutively secreted by mast cells and is the predominant form of tryptase found in blood in both healthy subjects and those with systemic mastocytosis under nonacute conditions. Second, the NH2-terminal activation dipeptide on beta-pro'tryptase is removed by dipeptidyl peptidase I at acid pH in the absence of heparin to yield an inactive monomeric form of tryptase. Conversion of the catalytic portion of beta-tryptase to the active homotetramer at acid pH requires heparin. Thus, beta-tryptase homotetramers probably account for active enzyme detected in vivo. Also, processing of tryptase to an active form should occur optimally only in cells that coexpress heparin proteoglycan, restricting this pathway to a mast cell lineage.

Full Text

The Full Text of this article is available as a PDF (339.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alter S. C., Metcalfe D. D., Bradford T. R., Schwartz L. B. Regulation of human mast cell tryptase. Effects of enzyme concentration, ionic strength and the structure and negative charge density of polysaccharides. Biochem J. 1987 Dec 15;248(3):821–827. doi: 10.1042/bj2480821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braganza V. J., Simmons W. H. Tryptase from rat skin: purification and properties. Biochemistry. 1991 May 21;30(20):4997–5007. doi: 10.1021/bi00234a023. [DOI] [PubMed] [Google Scholar]
  3. Butterfield J. H., Weiler D., Dewald G., Gleich G. J. Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk Res. 1988;12(4):345–355. doi: 10.1016/0145-2126(88)90050-1. [DOI] [PubMed] [Google Scholar]
  4. Calabro A., Hascall V. C. Differential effects of brefeldin A on chondroitin sulfate and hyaluronan synthesis in rat chondrosarcoma cells. J Biol Chem. 1994 Sep 9;269(36):22764–22770. [PubMed] [Google Scholar]
  5. Caughey G. H. Serine proteinases of mast cell and leukocyte granules. A league of their own. Am J Respir Crit Care Med. 1994 Dec;150(6 Pt 2):S138–S142. doi: 10.1164/ajrccm/150.6_Pt_2.S138. [DOI] [PubMed] [Google Scholar]
  6. De Young M. B., Nemeth E. F., Scarpa A. Measurement of the internal pH of mast cell granules using microvolumetric fluorescence and isotopic techniques. Arch Biochem Biophys. 1987 Apr;254(1):222–233. doi: 10.1016/0003-9861(87)90098-1. [DOI] [PubMed] [Google Scholar]
  7. Dikov M. M., Springman E. B., Yeola S., Serafin W. E. Processing of procarboxypeptidase A and other zymogens in murine mast cells. J Biol Chem. 1994 Oct 14;269(41):25897–25904. [PubMed] [Google Scholar]
  8. Freer S. T., Kraut J., Robertus J. D., Wright H. T., Xuong N. H. Chymotrypsinogen: 2.5-angstrom crystal structure, comparison with alpha-chymotrypsin, and implications for zymogen activation. Biochemistry. 1970 Apr 28;9(9):1997–2009. doi: 10.1021/bi00811a022. [DOI] [PubMed] [Google Scholar]
  9. Gullberg U., Lindmark A., Nilsson E., Persson A. M., Olsson I. Processing of human cathepsin G after transfection to the rat basophilic/mast cell tumor line RBL. J Biol Chem. 1994 Oct 7;269(40):25219–25225. [PubMed] [Google Scholar]
  10. Irani A. M., Bradford T. R., Kepley C. L., Schechter N. M., Schwartz L. B. Detection of MCT and MCTC types of human mast cells by immunohistochemistry using new monoclonal anti-tryptase and anti-chymase antibodies. J Histochem Cytochem. 1989 Oct;37(10):1509–1515. doi: 10.1177/37.10.2674273. [DOI] [PubMed] [Google Scholar]
  11. Kishi K. A new leukemia cell line with Philadelphia chromosome characterized as basophil precursors. Leuk Res. 1985;9(3):381–390. doi: 10.1016/0145-2126(85)90060-8. [DOI] [PubMed] [Google Scholar]
  12. Lindmark A., Gullberg U., Olsson I. Processing and intracellular transport of cathepsin G and neutrophil elastase in the leukemic myeloid cell line U-937-modulation by brefeldin A, ammonium chloride, and monensin. J Leukoc Biol. 1994 Jan;55(1):50–57. doi: 10.1002/jlb.55.1.50. [DOI] [PubMed] [Google Scholar]
  13. Mach L., Mort J. S., Glössl J. Maturation of human procathepsin B. Proenzyme activation and proteolytic processing of the precursor to the mature proteinase, in vitro, are primarily unimolecular processes. J Biol Chem. 1994 Apr 29;269(17):13030–13035. [PubMed] [Google Scholar]
  14. Matsumoto R., Sali A., Ghildyal N., Karplus M., Stevens R. L. Packaging of proteases and proteoglycans in the granules of mast cells and other hematopoietic cells. A cluster of histidines on mouse mast cell protease 7 regulates its binding to heparin serglycin proteoglycans. J Biol Chem. 1995 Aug 18;270(33):19524–19531. doi: 10.1074/jbc.270.33.19524. [DOI] [PubMed] [Google Scholar]
  15. McGuire M. J., Lipsky P. E., Thiele D. L. Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J Biol Chem. 1993 Feb 5;268(4):2458–2467. [PubMed] [Google Scholar]
  16. McGuire M. J., Lipsky P. E., Thiele D. L. Purification and characterization of dipeptidyl peptidase I from human spleen. Arch Biochem Biophys. 1992 Jun;295(2):280–288. doi: 10.1016/0003-9861(92)90519-3. [DOI] [PubMed] [Google Scholar]
  17. Miller J. S., Moxley G., Schwartz L. B. Cloning and characterization of a second complementary DNA for human tryptase. J Clin Invest. 1990 Sep;86(3):864–870. doi: 10.1172/JCI114786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller J. S., Westin E. H., Schwartz L. B. Cloning and characterization of complementary DNA for human tryptase. J Clin Invest. 1989 Oct;84(4):1188–1195. doi: 10.1172/JCI114284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murakami M., Karnik S. S., Husain A. Human prochymase activation. A novel role for heparin in zymogen processing. J Biol Chem. 1995 Feb 3;270(5):2218–2223. [PubMed] [Google Scholar]
  20. Neurath H. Proteolytic processing and physiological regulation. Trends Biochem Sci. 1989 Jul;14(7):268–271. doi: 10.1016/0968-0004(89)90061-3. [DOI] [PubMed] [Google Scholar]
  21. Porter J. A., von Kessler D. P., Ekker S. C., Young K. E., Lee J. J., Moses K., Beachy P. A. The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature. 1995 Mar 23;374(6520):363–366. doi: 10.1038/374363a0. [DOI] [PubMed] [Google Scholar]
  22. Reynolds D. S., Gurley D. S., Austen K. F., Serafin W. E. Cloning of the cDNA and gene of mouse mast cell protease-6. Transcription by progenitor mast cells and mast cells of the connective tissue subclass. J Biol Chem. 1991 Feb 25;266(6):3847–3853. [PubMed] [Google Scholar]
  23. Sakai K., Long S. D., Pettit D. A., Cabral G. A., Schwartz L. B. Expression and purification of recombinant human tryptase in a baculovirus system. Protein Expr Purif. 1996 Feb;7(1):67–73. doi: 10.1006/prep.1996.0010. [DOI] [PubMed] [Google Scholar]
  24. Schick B., Austen K. F., Schwartz L. B. Activation of rat serosal mast cells by chymase, an endogenous secretory granule protease. J Immunol. 1984 May;132(5):2571–2577. [PubMed] [Google Scholar]
  25. Schwartz L. B., Bradford T. R., Lee D. C., Chlebowski J. F. Immunologic and physicochemical evidence for conformational changes occurring on conversion of human mast cell tryptase from active tetramer to inactive monomer. Production of monoclonal antibodies recognizing active tryptase. J Immunol. 1990 Mar 15;144(6):2304–2311. [PubMed] [Google Scholar]
  26. Schwartz L. B., Bradford T. R. Regulation of tryptase from human lung mast cells by heparin. Stabilization of the active tetramer. J Biol Chem. 1986 Jun 5;261(16):7372–7379. [PubMed] [Google Scholar]
  27. Schwartz L. B., Kawahara M. S., Hugli T. E., Vik D., Fearon D. T., Austen K. F. Generation of C3a anaphylatoxin from human C3 by human mast cell tryptase. J Immunol. 1983 Apr;130(4):1891–1895. [PubMed] [Google Scholar]
  28. Schwartz L. B., Lewis R. A., Seldin D., Austen K. F. Acid hydrolases and tryptase from secretory granules of dispersed human lung mast cells. J Immunol. 1981 Apr;126(4):1290–1294. [PubMed] [Google Scholar]
  29. Schwartz L. B., Sakai K., Bradford T. R., Ren S., Zweiman B., Worobec A. S., Metcalfe D. D. The alpha form of human tryptase is the predominant type present in blood at baseline in normal subjects and is elevated in those with systemic mastocytosis. J Clin Invest. 1995 Dec;96(6):2702–2710. doi: 10.1172/JCI118337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schwartz L. B. Tryptase: a mast cell serine protease. Methods Enzymol. 1994;244:88–100. doi: 10.1016/0076-6879(94)44008-5. [DOI] [PubMed] [Google Scholar]
  31. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  32. Tanaka R. D., Clark J. M., Warne R. L., Abraham W. M., Moore W. R. Mast cell tryptase: a new target for therapeutic intervention in asthma. Int Arch Allergy Immunol. 1995 May-Jun;107(1-3):408–409. doi: 10.1159/000237056. [DOI] [PubMed] [Google Scholar]
  33. Vanderslice P., Ballinger S. M., Tam E. K., Goldstein S. M., Craik C. S., Caughey G. H. Human mast cell tryptase: multiple cDNAs and genes reveal a multigene serine protease family. Proc Natl Acad Sci U S A. 1990 May;87(10):3811–3815. doi: 10.1073/pnas.87.10.3811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vanderslice P., Craik C. S., Nadel J. A., Caughey G. H. Molecular cloning of dog mast cell tryptase and a related protease: structural evidence of a unique mode of serine protease activation. Biochemistry. 1989 May 16;28(10):4148–4155. doi: 10.1021/bi00436a004. [DOI] [PubMed] [Google Scholar]
  35. Vertel B. M., Walters L. M., Flay N., Kearns A. E., Schwartz N. B. Xylosylation is an endoplasmic reticulum to Golgi event. J Biol Chem. 1993 May 25;268(15):11105–11112. [PubMed] [Google Scholar]
  36. Xia H. Z., Kepley C. L., Sakai K., Chelliah J., Irani A. M., Schwartz L. B. Quantitation of tryptase, chymase, Fc epsilon RI alpha, and Fc epsilon RI gamma mRNAs in human mast cells and basophils by competitive reverse transcription-polymerase chain reaction. J Immunol. 1995 May 15;154(10):5472–5480. [PubMed] [Google Scholar]
  37. Ziegler-Heitbrock H. W., Thiel E., Fütterer A., Herzog V., Wirtz A., Riethmüller G. Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes. Int J Cancer. 1988 Mar 15;41(3):456–461. doi: 10.1002/ijc.2910410324. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES