Abstract
Regulation of coronary vasomotor tone during exercise is incompletely understood. We investigated the contributions of K+ ATP channels and adenosine to the coronary vasodilation that occurs during exercise in the normal heart and in the presence of a coronary artery stenosis. Dogs that were chronically instrumented with a Doppler flow probe, hydraulic occluder, and indwelling catheter on the left anterior descending coronary artery were exercised on a treadmill to produce heart rates of approximately 200 beats/min. By graded inflation of the occluder to produce a wide range of coronary stenosis severities, we determined the coronary pressure-flow relation. K+ atp channel blockade with intracoronary glibenclamide (10-50 microgram/kg per min) decreased coronary blood flow during exercise at coronary pressures within and below the autoregulatory range, indicating that coronary K+ ATP channel activation is critical for producing coronary vasodilation with either normal arterial inflow or when flow is restricted by a coronary artery stenosis. Adenosine receptor blockade with intravenous 8-phenyltheophylline (5 mg/kg) had no effect on coronary flow at pressures within the autoregulatory range but decreased flow at pressures < 55 mmHg. In contrast, in the presence of K+ ATP channel blockade, the addition of adenosine receptor blockade further decreased coronary flow even at coronary pressures in the autoregulatory range, indicating increased importance of the vasodilator influence of endogenous adenosine during exercise when K+ atp channels are blocked. Intracoronary adenosine (50 microgram/kg per min) increased coronary flow at perfusion pressures both within and below the autoregulatory range. In contrast, selective K+ ATP channel activation with intracoronary pinacidil (0.2-5.0 microgram/kg per min) increased flow at normal but not at lower coronary pressures (< 55 mmHg). This finding demonstrates that not all K+ ATP channels are activated during exercise at pressures in the autoregulatory range, but that most K+ ATP channels are recruited as pressures approach the lower end of the autoregulatory plateau. Thus, K+ ATP channels and endogenous adenosine play a synergistic role in maintaining vasodilation during exercise in normal hearts and distal to a coronary artery stenosis that results in myocardial hypoperfusion during exercise.
Full Text
The Full Text of this article is available as a PDF (257.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman J. D., Kinn J., Duncker D. J., Bache R. J. Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in the dog. Cardiovasc Res. 1994 Jan;28(1):119–124. doi: 10.1093/cvr/28.1.119. [DOI] [PubMed] [Google Scholar]
- Aversano T., Ouyang P., Silverman H. Blockade of the ATP-sensitive potassium channel modulates reactive hyperemia in the canine coronary circulation. Circ Res. 1991 Sep;69(3):618–622. doi: 10.1161/01.res.69.3.618. [DOI] [PubMed] [Google Scholar]
- Bacchus A. N., Ely S. W., Knabb R. M., Rubio R., Berne R. M. Adenosine and coronary blood flow in conscious dogs during normal physiological stimuli. Am J Physiol. 1982 Oct;243(4):H628–H633. doi: 10.1152/ajpheart.1982.243.4.H628. [DOI] [PubMed] [Google Scholar]
- Bache R. J., Dai X. Z., Schwartz J. S., Homans D. C. Role of adenosine in coronary vasodilation during exercise. Circ Res. 1988 Apr;62(4):846–853. doi: 10.1161/01.res.62.4.846. [DOI] [PubMed] [Google Scholar]
- Belloni F. L., Hintze T. H. Glibenclamide attenuates adenosine-induced bradycardia and coronary vasodilatation. Am J Physiol. 1991 Sep;261(3 Pt 2):H720–H727. doi: 10.1152/ajpheart.1991.261.3.H720. [DOI] [PubMed] [Google Scholar]
- Dai X. Z., Bache R. J. Effect of indomethacin on coronary blood flow during graded treadmill exercise in the dog. Am J Physiol. 1984 Sep;247(3 Pt 2):H452–H458. doi: 10.1152/ajpheart.1984.247.3.H452. [DOI] [PubMed] [Google Scholar]
- Dart C., Standen N. B. Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery. J Physiol. 1993 Nov;471:767–786. doi: 10.1113/jphysiol.1993.sp019927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duncker D. J., Bache R. J. Inhibition of nitric oxide production aggravates myocardial hypoperfusion during exercise in the presence of a coronary artery stenosis. Circ Res. 1994 Apr;74(4):629–640. doi: 10.1161/01.res.74.4.629. [DOI] [PubMed] [Google Scholar]
- Duncker D. J., Laxson D. D., Lindstrom P., Bache R. J. Endogenous adenosine and coronary vasoconstriction in hypoperfused myocardium during exercise. Cardiovasc Res. 1993 Sep;27(9):1592–1597. doi: 10.1093/cvr/27.9.1592. [DOI] [PubMed] [Google Scholar]
- Duncker D. J., Van Zon N. S., Altman J. D., Pavek T. J., Bache R. J. Role of K+ATP channels in coronary vasodilation during exercise. Circulation. 1993 Sep;88(3):1245–1253. doi: 10.1161/01.cir.88.3.1245. [DOI] [PubMed] [Google Scholar]
- Duncker D. J., Van Zon N. S., Crampton M., Herrlinger S., Homans D. C., Bache R. J. Coronary pressure-flow relationship and exercise: contributions of heart rate, contractility, and alpha 1-adrenergic tone. Am J Physiol. 1994 Feb;266(2 Pt 2):H795–H810. doi: 10.1152/ajpheart.1994.266.2.H795. [DOI] [PubMed] [Google Scholar]
- Gallagher K. P., Matsuzaki M., Osakada G., Kemper W. S., Ross J., Jr Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res. 1983 Jun;52(6):716–729. doi: 10.1161/01.res.52.6.716. [DOI] [PubMed] [Google Scholar]
- Gewirtz H., Olsson R. A., Brautigan D. L., Brown P. R., Most A. S. Adenosine's role in regulating basal coronary arteriolar tone. Am J Physiol. 1986 Jun;250(6 Pt 2):H1030–H1036. doi: 10.1152/ajpheart.1986.250.6.H1030. [DOI] [PubMed] [Google Scholar]
- Giles R. W., Wilcken D. E. Reactive hyperaemia in the dog heart: inter-relations between adenosine, ATP, and aminophylline and the effect of indomethacin. Cardiovasc Res. 1977 Mar;11(2):113–121. doi: 10.1093/cvr/11.2.113. [DOI] [PubMed] [Google Scholar]
- Hanley F. L., Grattan M. T., Stevens M. B., Hoffman J. I. Role of adenosine in coronary autoregulation. Am J Physiol. 1986 Apr;250(4 Pt 2):H558–H566. doi: 10.1152/ajpheart.1986.250.4.H558. [DOI] [PubMed] [Google Scholar]
- Harrison D. G., Bates J. N. The nitrovasodilators. New ideas about old drugs. Circulation. 1993 May;87(5):1461–1467. doi: 10.1161/01.cir.87.5.1461. [DOI] [PubMed] [Google Scholar]
- Headrick J. P., Ely S. W., Matherne G. P., Berne R. M. Myocardial adenosine, flow, and metabolism during adenosine antagonism and adrenergic stimulation. Am J Physiol. 1993 Jan;264(1 Pt 2):H61–H70. doi: 10.1152/ajpheart.1993.264.1.H61. [DOI] [PubMed] [Google Scholar]
- Headrick J. P., Matherne G. P., Berr S. S., Berne R. M. Effects of graded perfusion and isovolumic work on epicardial and venous adenosine and cytosolic metabolism. J Mol Cell Cardiol. 1991 Mar;23(3):309–324. doi: 10.1016/0022-2828(91)90067-v. [DOI] [PubMed] [Google Scholar]
- Hoffman J. I., Spaan J. A. Pressure-flow relations in coronary circulation. Physiol Rev. 1990 Apr;70(2):331–390. doi: 10.1152/physrev.1990.70.2.331. [DOI] [PubMed] [Google Scholar]
- Hu S. L., Kim H. S., Okolie P., Weiss G. B. Alterations by glyburide of effects of BRL 34915 and P 1060 on contraction, 86Rb efflux and the maxi-K+ channel in rat portal vein. J Pharmacol Exp Ther. 1990 May;253(2):771–777. [PubMed] [Google Scholar]
- Imamura Y., Tomoike H., Narishige T., Takahashi T., Kasuya H., Takeshita A. Glibenclamide decreases basal coronary blood flow in anesthetized dogs. Am J Physiol. 1992 Aug;263(2 Pt 2):H399–H404. doi: 10.1152/ajpheart.1992.263.2.H399. [DOI] [PubMed] [Google Scholar]
- Komaru T., Lamping K. G., Eastham C. L., Dellsperger K. C. Role of ATP-sensitive potassium channels in coronary microvascular autoregulatory responses. Circ Res. 1991 Oct;69(4):1146–1151. doi: 10.1161/01.res.69.4.1146. [DOI] [PubMed] [Google Scholar]
- Kroll K., Feigl E. O. Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. Am J Physiol. 1985 Dec;249(6 Pt 2):H1176–H1187. doi: 10.1152/ajpheart.1985.249.6.H1176. [DOI] [PubMed] [Google Scholar]
- Kusachi S., Thompson R. D., Olsson R. A. Ligand selectivity of dog coronary adenosine receptor resembles that of adenylate cyclase stimulatory (Ra) receptors. J Pharmacol Exp Ther. 1983 Nov;227(2):316–321. [PubMed] [Google Scholar]
- Laxson D. D., Dai X. Z., Homans D. C., Bache R. J. Coronary vasodilator reserve in ischemic myocardium of the exercising dog. Circulation. 1992 Jan;85(1):313–322. doi: 10.1161/01.cir.85.1.313. [DOI] [PubMed] [Google Scholar]
- Laxson D. D., Homans D. C., Bache R. J. Inhibition of adenosine-mediated coronary vasodilation exacerbates myocardial ischemia during exercise. Am J Physiol. 1993 Nov;265(5 Pt 2):H1471–H1477. doi: 10.1152/ajpheart.1993.265.5.H1471. [DOI] [PubMed] [Google Scholar]
- McKenzie J. E., Steffen R. P., Haddy F. J. Relationships between adenosine and coronary resistance in conscious exercising dogs. Am J Physiol. 1982 Jan;242(1):H24–H29. doi: 10.1152/ajpheart.1982.242.1.H24. [DOI] [PubMed] [Google Scholar]
- Messina L. M., Hanley F. L., Uhlig P. N., Baer R. W., Grattan M. T., Hoffman J. I. Effects of pressure gradients between branches of the left coronary artery on the pressure axis intercept and the shape of steady state circumflex pressure-flow relations in dogs. Circ Res. 1985 Jan;56(1):11–19. doi: 10.1161/01.res.56.1.11. [DOI] [PubMed] [Google Scholar]
- Narishige T., Egashira K., Akatsuka Y., Katsuda Y., Numaguchi K., Sakata M., Takeshita A. Glibenclamide, a putative ATP-sensitive K+ channel blocker, inhibits coronary autoregulation in anesthetized dogs. Circ Res. 1993 Oct;73(4):771–776. doi: 10.1161/01.res.73.4.771. [DOI] [PubMed] [Google Scholar]
- Nichols C. G., Lederer W. J. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol. 1991 Dec;261(6 Pt 2):H1675–H1686. doi: 10.1152/ajpheart.1991.261.6.H1675. [DOI] [PubMed] [Google Scholar]
- Olsson R. A., Pearson J. D. Cardiovascular purinoceptors. Physiol Rev. 1990 Jul;70(3):761–845. doi: 10.1152/physrev.1990.70.3.761. [DOI] [PubMed] [Google Scholar]
- Rozek R. J., Kuo T. H., Giacomelli F., Wiener J. Proteolytic activities in hypertensive cardiomyopathy of rats. J Mol Cell Cardiol. 1983 Mar;15(3):173–187. doi: 10.1016/0022-2828(83)90297-3. [DOI] [PubMed] [Google Scholar]
- Saito D., Steinhart C. R., Nixon D. G., Olsson R. A. Intracoronary adenosine deaminase reduces canine myocardial reactive hyperemia. Circ Res. 1981 Dec;49(6):1262–1267. doi: 10.1161/01.res.49.6.1262. [DOI] [PubMed] [Google Scholar]
- Samaha F. F., Heineman F. W., Ince C., Fleming J., Balaban R. S. ATP-sensitive potassium channel is essential to maintain basal coronary vascular tone in vivo. Am J Physiol. 1992 May;262(5 Pt 1):C1220–C1227. doi: 10.1152/ajpcell.1992.262.5.C1220. [DOI] [PubMed] [Google Scholar]
- Sargent C. A., Smith M. A., Dzwonczyk S., Sleph P. G., Grover G. J. Effect of potassium channel blockade on the anti-ischemic actions of mechanistically diverse agents. J Pharmacol Exp Ther. 1991 Oct;259(1):97–103. [PubMed] [Google Scholar]
- Schütz W., Zimpfer M., Raberger G. Effect of aminophylline on coronary reactive hyperaemia following brief and long occlusion periods. Cardiovasc Res. 1977 Nov;11(6):507–511. doi: 10.1093/cvr/11.6.507. [DOI] [PubMed] [Google Scholar]
- Silver P. J., Walus K., DiSalvo J. Adenosine-mediated relaxation and activation of cyclic AMP-dependent protein kinase in coronary arterial smooth muscle. J Pharmacol Exp Ther. 1984 Feb;228(2):342–347. [PubMed] [Google Scholar]
- Vanelli G., Chang H. Y., Gatensby A. G., Hussain S. N. Contribution of potassium channels to active hyperemia of the canine diaphragm. J Appl Physiol (1985) 1994 Mar;76(3):1098–1105. doi: 10.1152/jappl.1994.76.3.1098. [DOI] [PubMed] [Google Scholar]
- Watkinson W. P., Foley D. H., Rubio R., Berne R. M. Myocardial adenosine formation with increased cardiac performance in the dog. Am J Physiol. 1979 Jan;236(1):H13–H21. doi: 10.1152/ajpheart.1979.236.1.H13. [DOI] [PubMed] [Google Scholar]
