Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Feb 15;97(4):1020–1027. doi: 10.1172/JCI118493

Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces.

A B Moy 1, J Van Engelenhoven 1, J Bodmer 1, J Kamath 1, C Keese 1, I Giaever 1, S Shasby 1, D M Shasby 1
PMCID: PMC507148  PMID: 8613524

Abstract

We examined the contribution of actin-myosin contraction to the modulation of human umbilical vein endothelial cell focal adhesion caused by histamine and thrombin. Focal adhesion was measured as the electrical resistance across a cultured monolayer grown on a microelectrode. Actin-myosin contraction was measured as isometric tension of cultured monolayers grown on a collagen gel. Histamine immediately decreased electrical resistance but returned to basal levels within 3-5 min. Histamine did not increase isometric tension. Thrombin also immediately decreased electrical resistance, but, however, resistance did not return to basal levels for 40-60 min. Thrombin also increased isometric tension, ML-7, an inhibitor of myosin light chain kinase, prevented increases in myosin light chain phosphorylation and increases in tension development in cells exposed to thrombin. ML-7 did not prevent a decline in electrical resistance in cells exposed to thrombin. Instead, ML-7 restored the electrical resistance to basal levels in a shorter period of time (20 min) than cells exposed to thrombin alone. Also, histamine subsequently increased electrical resistance to above basal levels, and thrombin initiated an increase in resistance during the time of peak tension development. Hence, histamine and thrombin modulate endothelial cell focal adhesion through centripetal and centrifugal forces.

Full Text

The Full Text of this article is available as a PDF (226.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carson M. R., Shasby S. S., Shasby D. M. Histamine and inositol phosphate accumulation in endothelium: cAMP and a G protein. Am J Physiol. 1989 Oct;257(4 Pt 1):L259–L264. doi: 10.1152/ajplung.1989.257.4.L259. [DOI] [PubMed] [Google Scholar]
  2. Daniel J. L., Sellers J. R. Purification and characterization of platelet myosin. Methods Enzymol. 1992;215:78–88. doi: 10.1016/0076-6879(92)15054-g. [DOI] [PubMed] [Google Scholar]
  3. Ghosh P. M., Keese C. R., Giaever I. Monitoring electropermeabilization in the plasma membrane of adherent mammalian cells. Biophys J. 1993 May;64(5):1602–1609. doi: 10.1016/S0006-3495(93)81531-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Giaever I., Keese C. R. Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7896–7900. doi: 10.1073/pnas.88.17.7896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giaever I., Keese C. R. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3761–3764. doi: 10.1073/pnas.81.12.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giaever I., Keese C. R. Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Trans Biomed Eng. 1986 Feb;33(2):242–247. doi: 10.1109/TBME.1986.325896. [DOI] [PubMed] [Google Scholar]
  7. Goeckeler Z. M., Wysolmerski R. B. Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol. 1995 Aug;130(3):613–627. doi: 10.1083/jcb.130.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ingber D. E. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci. 1993 Mar;104(Pt 3):613–627. doi: 10.1242/jcs.104.3.613. [DOI] [PubMed] [Google Scholar]
  9. Kolodney M. S., Elson E. L. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J Biol Chem. 1993 Nov 15;268(32):23850–23855. [PubMed] [Google Scholar]
  10. Kolodney M. S., Wysolmerski R. B. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J Cell Biol. 1992 Apr;117(1):73–82. doi: 10.1083/jcb.117.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laposata M., Dovnarsky D. K., Shin H. S. Thrombin-induced gap formation in confluent endothelial cell monolayers in vitro. Blood. 1983 Sep;62(3):549–556. [PubMed] [Google Scholar]
  12. Ludowyke R. I., Peleg I., Beaven M. A., Adelstein R. S. Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J Biol Chem. 1989 Jul 25;264(21):12492–12501. [PubMed] [Google Scholar]
  13. MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Majno G., Shea S. M., Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969 Sep;42(3):647–672. doi: 10.1083/jcb.42.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moy A. B., Shasby S. S., Scott B. D., Shasby D. M. The effect of histamine and cyclic adenosine monophosphate on myosin light chain phosphorylation in human umbilical vein endothelial cells. J Clin Invest. 1993 Sep;92(3):1198–1206. doi: 10.1172/JCI116690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moy A. B., Sheldon R., Lindsley K., Shasby S., Shasby D. M. Centripetal tension and endothelial retraction. Chest. 1994 Mar;105(3 Suppl):107S–108S. doi: 10.1378/chest.105.3_supplement.107s. [DOI] [PubMed] [Google Scholar]
  17. Nicolaysen G. Intravascular concentrations of calcium and magnesium ions and edema formation in isolated lungs. Acta Physiol Scand. 1971 Mar;81(3):325–339. doi: 10.1111/j.1748-1716.1971.tb04907.x. [DOI] [PubMed] [Google Scholar]
  18. Persechini A., Hartshorne D. J. Phosphorylation of smooth muscle myosin: evidence for cooperativity between the myosin heads. Science. 1981 Sep 18;213(4514):1383–1385. doi: 10.1126/science.6455737. [DOI] [PubMed] [Google Scholar]
  19. Pitelka D. R., Taggart B. N., Hamamoto S. T. Effects of extracellular calcium depletion on membrane topography and occluding junctions of mammary epithelial cells in culture. J Cell Biol. 1983 Mar;96(3):613–624. doi: 10.1083/jcb.96.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schaeffer R. C., Jr, Gong F., Bitrick M. S., Jr, Smith T. L. Thrombin and bradykinin initiate discrete endothelial solute permeability mechanisms. Am J Physiol. 1993 Jun;264(6 Pt 2):H1798–H1809. doi: 10.1152/ajpheart.1993.264.6.H1798. [DOI] [PubMed] [Google Scholar]
  21. Schnittler H. J., Wilke A., Gress T., Suttorp N., Drenckhahn D. Role of actin and myosin in the control of paracellular permeability in pig, rat and human vascular endothelium. J Physiol. 1990 Dec;431:379–401. doi: 10.1113/jphysiol.1990.sp018335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shasby D. M., Shasby S. S. Effects of calcium on transendothelial albumin transfer and electrical resistance. J Appl Physiol (1985) 1986 Jan;60(1):71–79. doi: 10.1152/jappl.1986.60.1.71. [DOI] [PubMed] [Google Scholar]
  23. Sheldon R., Moy A., Lindsley K., Shasby S., Shasby D. M. Role of myosin light-chain phosphorylation in endothelial cell retraction. Am J Physiol. 1993 Dec;265(6 Pt 1):L606–L612. doi: 10.1152/ajplung.1993.265.6.L606. [DOI] [PubMed] [Google Scholar]
  24. Silver P. J., Stull J. T. Phosphorylation of myosin light chain and phosphorylase in tracheal smooth muscle in response to KCl and carbachol. Mol Pharmacol. 1984 Mar;25(2):267–274. [PubMed] [Google Scholar]
  25. Sims J. R., Karp S., Ingber D. E. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. J Cell Sci. 1992 Dec;103(Pt 4):1215–1222. doi: 10.1242/jcs.103.4.1215. [DOI] [PubMed] [Google Scholar]
  26. Singhvi R., Kumar A., Lopez G. P., Stephanopoulos G. N., Wang D. I., Whitesides G. M., Ingber D. E. Engineering cell shape and function. Science. 1994 Apr 29;264(5159):696–698. doi: 10.1126/science.8171320. [DOI] [PubMed] [Google Scholar]
  27. Tiruppathi C., Malik A. B., Del Vecchio P. J., Keese C. R., Giaever I. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7919–7923. doi: 10.1073/pnas.89.17.7919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–1127. doi: 10.1126/science.7684161. [DOI] [PubMed] [Google Scholar]
  29. Wu N. Z., Baldwin A. L. Transient venular permeability increase and endothelial gap formation induced by histamine. Am J Physiol. 1992 Apr;262(4 Pt 2):H1238–H1247. doi: 10.1152/ajpheart.1992.262.4.H1238. [DOI] [PubMed] [Google Scholar]
  30. Wysolmerski R. B., Lagunoff D. Involvement of myosin light-chain kinase in endothelial cell retraction. Proc Natl Acad Sci U S A. 1990 Jan;87(1):16–20. doi: 10.1073/pnas.87.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wysolmerski R. B., Lagunoff D. Regulation of permeabilized endothelial cell retraction by myosin phosphorylation. Am J Physiol. 1991 Jul;261(1 Pt 1):C32–C40. doi: 10.1152/ajpcell.1991.261.1.C32. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES