Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Feb 15;97(4):1076–1084. doi: 10.1172/JCI118500

Adaptation of rabbit cortical collecting duct HCO3- transport to metabolic acidosis in vitro.

S Tsuruoka 1, G J Schwartz 1
PMCID: PMC507155  PMID: 8613531

Abstract

Net HCO3- transport in the rabbit kidney cortical collecting duct (CCD) is mediated by simultaneous H+ secretion and HCO3- secretion, most likely occurring in a alpha- and beta-intercalated cells (ICs), respectively. The polarity of net HCO3- transport is shifted from secretion to absorption after metabolic acidosis or acid incubation of the CCD. We investigated this adaptation by measuring net HCO3- flux before and after incubating CCDs 1 h at pH 6.8 followed by 2 h at pH 7.4. Acid incubation always reversed HCO3- flux from net secretion to absorption, whereas incubation for 3 h at pH 7.4 did not. Inhibition of alpha-IC function (bath CL- removal or DIDS, luminal bafilomycin) stimulated net HCO3- secretion by approximately 2 pmol/min per mm before acid incubation, whereas after incubation these agents inhibited net HCO3- absorption by approximately 5 pmol/min per mm. Inhibition of beta-IC function (luminal Cl- removal) inhibited HCO3- secretion by approximately 9 pmol/min per mm before incubation, whereas after incubation HCO3- absorption by only 3 pmol/min per mm. After acid incubation, luminal SCH28080 inhibited HCO3- absorption by only 5-15% vs the circa 90% inhibitory effect of bafilomycin. In outer CCDs, which contain fewer alpha-ICs than midcortical segments, the reversal in polarity of HCO3- flux was blunted after acid incubation. We conclude that the CCD adapts to low pH in vitro by downregulation HCO3- secretion in beta-ICs via decreased apical CL-/base exchang activity and upregulating HCO3- absorption in alpha-ICs via increased apical H+ -ATPase and basolateral CL-/base exchange activities. Whether or not there is a reversal of IC polarity or recruitment of gamma-ICs in this adaptation remains to be established.

Full Text

The Full Text of this article is available as a PDF (233.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper S. L., Natale J., Gluck S., Lodish H. F., Brown D. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5429–5433. doi: 10.1073/pnas.86.14.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armitage F. E., Wingo C. S. Luminal acidification in K-replete OMCDi: contributions of H-K-ATPase and bafilomycin-A1-sensitive H-ATPase. Am J Physiol. 1994 Sep;267(3 Pt 2):F450–F458. doi: 10.1152/ajprenal.1994.267.3.F450. [DOI] [PubMed] [Google Scholar]
  3. Armitage F. E., Wingo C. S. Luminal acidification in K-replete OMCDi: inhibition of bicarbonate absorption by K removal and luminal Ba. Am J Physiol. 1995 Jul;269(1 Pt 2):F116–F124. doi: 10.1152/ajprenal.1995.269.1.F116. [DOI] [PubMed] [Google Scholar]
  4. Atkins J. L., Burg M. B. Bicarbonate transport by isolated perfused rat collecting ducts. Am J Physiol. 1985 Oct;249(4 Pt 2):F485–F489. doi: 10.1152/ajprenal.1985.249.4.F485. [DOI] [PubMed] [Google Scholar]
  5. Bastani B., Purcell H., Hemken P., Trigg D., Gluck S. Expression and distribution of renal vacuolar proton-translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Invest. 1991 Jul;88(1):126–136. doi: 10.1172/JCI115268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown D., Hirsch S., Gluck S. An H+-ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature. 1988 Feb 18;331(6157):622–624. doi: 10.1038/331622a0. [DOI] [PubMed] [Google Scholar]
  8. Brown D. Membrane recycling and epithelial cell function. Am J Physiol. 1989 Jan;256(1 Pt 2):F1–12. doi: 10.1152/ajprenal.1989.256.1.F1. [DOI] [PubMed] [Google Scholar]
  9. Brown D., Weyer P., Orci L. Nonclathrin-coated vesicles are involved in endocytosis in kidney collecting duct intercalated cells. Anat Rec. 1987 Jul;218(3):237–242. doi: 10.1002/ar.1092180303. [DOI] [PubMed] [Google Scholar]
  10. Burg M., Green N. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules. Am J Physiol. 1977 Oct;233(4):F307–F314. doi: 10.1152/ajprenal.1977.233.4.F307. [DOI] [PubMed] [Google Scholar]
  11. Emmons C. L., Matsuzaki K., Stokes J. B., Schuster V. L. Axial heterogeneity of rabbit cortical collecting duct. Am J Physiol. 1991 Apr;260(4 Pt 2):F498–F505. doi: 10.1152/ajprenal.1991.260.4.F498. [DOI] [PubMed] [Google Scholar]
  12. Emmons C., Kurtz I. Functional characterization of three intercalated cell subtypes in the rabbit outer cortical collecting duct. J Clin Invest. 1994 Jan;93(1):417–423. doi: 10.1172/JCI116976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fejes-Tóth G., Náray-Fejes-Tóth A., Satlin L. M., Mehrgut F. M., Schwartz G. J. Inhibition of bicarbonate transport in peanut lectin-positive intercalated cells by a monoclonal antibody. Am J Physiol. 1994 Jun;266(6 Pt 2):F901–F910. doi: 10.1152/ajprenal.1994.266.6.F901. [DOI] [PubMed] [Google Scholar]
  14. Furuya H., Breyer M. D., Jacobson H. R. Functional characterization of alpha- and beta-intercalated cell types in rabbit cortical collecting duct. Am J Physiol. 1991 Sep;261(3 Pt 2):F377–F385. doi: 10.1152/ajprenal.1991.261.3.F377. [DOI] [PubMed] [Google Scholar]
  15. Garcia-Austt J., Good D. W., Burg M. B., Knepper M. A. Deoxycorticosterone-stimulated bicarbonate secretion in rabbit cortical collecting ducts: effects of luminal chloride removal and in vivo acid loading. Am J Physiol. 1985 Aug;249(2 Pt 2):F205–F212. doi: 10.1152/ajprenal.1985.249.2.F205. [DOI] [PubMed] [Google Scholar]
  16. Gifford J. D., Rome L., Galla J. H. H(+)-K(+)-ATPase activity in rat collecting duct segments. Am J Physiol. 1992 Apr;262(4 Pt 2):F692–F695. doi: 10.1152/ajprenal.1992.262.4.F692. [DOI] [PubMed] [Google Scholar]
  17. Gifford J. D., Ware M. W., Luke R. G., Galla J. H. HCO3- transport in rat CCD: rapid adaptation by in vivo but not in vitro alkalosis. Am J Physiol. 1993 Mar;264(3 Pt 2):F435–F440. doi: 10.1152/ajprenal.1993.264.3.F435. [DOI] [PubMed] [Google Scholar]
  18. Grantham J. J., Kurg M. B., Obloff J. The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules. J Clin Invest. 1970 Oct;49(10):1815–1826. doi: 10.1172/JCI106399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hamm L. L., Hering-Smith K. S., Vehaskari V. M. Control of bicarbonate transport in collecting tubules from normal and remnant kidneys. Am J Physiol. 1989 Apr;256(4 Pt 2):F680–F687. doi: 10.1152/ajprenal.1989.256.4.F680. [DOI] [PubMed] [Google Scholar]
  20. Kuwahara M., Sasaki S., Marumo F. Mineralocorticoids and acidosis regulate H+/HCO3- transport of intercalated cells. J Clin Invest. 1992 May;89(5):1388–1394. doi: 10.1172/JCI115727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laski M. E., Kurtzman N. A. Collecting tubule adaptation to respiratory acidosis induced in vivo. Am J Physiol. 1990 Jan;258(1 Pt 2):F15–F20. doi: 10.1152/ajprenal.1990.258.1.F15. [DOI] [PubMed] [Google Scholar]
  22. Lombard W. E., Kokko J. P., Jacobson H. R. Bicarbonate transport in cortical and outer medullary collecting tubules. Am J Physiol. 1983 Mar;244(3):F289–F296. doi: 10.1152/ajprenal.1983.244.3.F289. [DOI] [PubMed] [Google Scholar]
  23. Madsen K. M., Tisher C. C. Structural-functional relationships along the distal nephron. Am J Physiol. 1986 Jan;250(1 Pt 2):F1–15. doi: 10.1152/ajprenal.1986.250.1.F1. [DOI] [PubMed] [Google Scholar]
  24. McKinney T. D., Burg M. B. Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J Clin Invest. 1977 Sep;60(3):766–768. doi: 10.1172/JCI108830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McKinney T. D., Davidson K. K. Bicarbonate transport in collecting tubules from outer stripe of outer medulla of rabbit kidneys. Am J Physiol. 1987 Nov;253(5 Pt 2):F816–F822. doi: 10.1152/ajprenal.1987.253.5.F816. [DOI] [PubMed] [Google Scholar]
  26. McKinney T. D., Davidson K. K. Effects of respiratory acidosis on HCO3- transport by rabbit collecting tubules. Am J Physiol. 1988 Oct;255(4 Pt 2):F656–F665. doi: 10.1152/ajprenal.1988.255.4.F656. [DOI] [PubMed] [Google Scholar]
  27. Neugarten J., Kozin A., Gayner R., Schacht R. G., Baldwin D. S. Dietary protein restriction and glomerular permselectivity in nephrotoxic serum nephritis. Kidney Int. 1991 Jul;40(1):57–61. doi: 10.1038/ki.1991.179. [DOI] [PubMed] [Google Scholar]
  28. Satlin L. M., Matsumoto T., Schwartz G. J. Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells. Am J Physiol. 1992 Feb;262(2 Pt 2):F199–F208. doi: 10.1152/ajprenal.1992.262.2.F199. [DOI] [PubMed] [Google Scholar]
  29. Satlin L. M., Schwartz G. J. Cellular remodeling of HCO3(-)-secreting cells in rabbit renal collecting duct in response to an acidic environment. J Cell Biol. 1989 Sep;109(3):1279–1288. doi: 10.1083/jcb.109.3.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schuster V. L., Bonsib S. M., Jennings M. L. Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry. Am J Physiol. 1986 Sep;251(3 Pt 1):C347–C355. doi: 10.1152/ajpcell.1986.251.3.C347. [DOI] [PubMed] [Google Scholar]
  31. Schuster V. L. Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules. J Clin Invest. 1985 Jun;75(6):2056–2064. doi: 10.1172/JCI111925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schuster V. L., Fejes-Tóth G., Naray-Fejes-Tóth A., Gluck S. Colocalization of H(+)-ATPase and band 3 anion exchanger in rabbit collecting duct intercalated cells. Am J Physiol. 1991 Apr;260(4 Pt 2):F506–F517. doi: 10.1152/ajprenal.1991.260.4.F506. [DOI] [PubMed] [Google Scholar]
  33. Schwartz G. J., Al-Awqati Q. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest. 1985 May;75(5):1638–1644. doi: 10.1172/JCI111871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schwartz G. J., Barasch J., Al-Awqati Q. Plasticity of functional epithelial polarity. 1985 Nov 28-Dec 4Nature. 318(6044):368–371. doi: 10.1038/318368a0. [DOI] [PubMed] [Google Scholar]
  35. Schwartz G. J., Satlin L. M., Bergmann J. E. Fluorescent characterization of collecting duct cells: a second H+-secreting type. Am J Physiol. 1988 Nov;255(5 Pt 2):F1003–F1014. doi: 10.1152/ajprenal.1988.255.5.F1003. [DOI] [PubMed] [Google Scholar]
  36. Schwartz G. J., Weinstein A. M., Steele R. E., Stephenson J. L., Burg M. B. Carbon dioxide permeability of rabbit proximal convoluted tubules. Am J Physiol. 1981 Mar;240(3):F231–F244. doi: 10.1152/ajprenal.1981.240.3.F231. [DOI] [PubMed] [Google Scholar]
  37. Star R. A., Burg M. B., Knepper M. A. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange. J Clin Invest. 1985 Sep;76(3):1123–1130. doi: 10.1172/JCI112067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Verlander J. W., Madsen K. M., Cannon J. K., Tisher C. C. Activation of acid-secreting intercalated cells in rabbit collecting duct with ammonium chloride loading. Am J Physiol. 1994 Apr;266(4 Pt 2):F633–F645. doi: 10.1152/ajprenal.1994.266.4.F633. [DOI] [PubMed] [Google Scholar]
  39. Verlander J. W., Madsen K. M., Stone D. K., Tisher C. C. Ultrastructural localization of H+ATPase in rabbit cortical collecting duct. J Am Soc Nephrol. 1994 Feb;4(8):1546–1557. doi: 10.1681/ASN.V481546. [DOI] [PubMed] [Google Scholar]
  40. Weiner I. D., Hamm L. L. Regulation of Cl-/HCO3- exchange in the rabbit cortical collecting tubule. J Clin Invest. 1991 May;87(5):1553–1558. doi: 10.1172/JCI115168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weiner I. D., Hamm L. L. Regulation of intracellular pH in the rabbit cortical collecting tubule. J Clin Invest. 1990 Jan;85(1):274–281. doi: 10.1172/JCI114423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weiner I. D., Hamm L. L. Use of fluorescent dye BCECF to measure intracellular pH in cortical collecting tubule. Am J Physiol. 1989 May;256(5 Pt 2):F957–F964. doi: 10.1152/ajprenal.1989.256.5.F957. [DOI] [PubMed] [Google Scholar]
  43. Weiner I. D., Weill A. E., New A. R. Distribution of Cl-/HCO3- exchange and intercalated cells in rabbit cortical collecting duct. Am J Physiol. 1994 Dec;267(6 Pt 2):F952–F964. doi: 10.1152/ajprenal.1994.267.6.F952. [DOI] [PubMed] [Google Scholar]
  44. Yasoshima K., Satlin L. M., Schwartz G. J. Adaptation of rabbit cortical collecting duct to in vitro acid incubation. Am J Physiol. 1992 Oct;263(4 Pt 2):F749–F756. doi: 10.1152/ajprenal.1992.263.4.F749. [DOI] [PubMed] [Google Scholar]
  45. Yoshimori T., Yamamoto A., Moriyama Y., Futai M., Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991 Sep 15;266(26):17707–17712. [PubMed] [Google Scholar]
  46. Zhou X., Wingo C. S. Stimulation of total CO2 flux by 10% CO2 in rabbit CCD: role of an apical Sch-28080- and Ba-sensitive mechanism. Am J Physiol. 1994 Jul;267(1 Pt 2):F114–F120. doi: 10.1152/ajprenal.1994.267.1.F114. [DOI] [PubMed] [Google Scholar]
  47. van Adelsberg J., Edwards J. C., Takito J., Kiss B., al-Awqati Q. An induced extracellular matrix protein reverses the polarity of band 3 in intercalated epithelial cells. Cell. 1994 Mar 25;76(6):1053–1061. doi: 10.1016/0092-8674(94)90382-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES