Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Feb 15;97(4):1085–1093. doi: 10.1172/JCI118501

Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor.

D D Bikle 1, A Ratnam 1, T Mauro 1, J Harris 1, S Pillai 1
PMCID: PMC507156  PMID: 8613532

Abstract

Extracellular calcium concentrations (Cao) > 0.1 mM are required for the differentiation of normal human keratinocytes in culture. Increments in Cao result in acute and sustained increases in the intracellular calcium level (Cai), postulated to involve both a release of calcium from intracellular stores and a subsequent increase in calcium influx through nonspecific cation channels. The sustained rise in Cai appears to be necessary for keratinocyte differentiation. To understand the mechanism by which keratinocytes respond to Cao, we measured the acute effects of Cao on Cai and calcium influx in keratinocytes at various stages of differentiation. We then demonstrated the existence of the calcium receptor (CaR) in keratinocytes and determined the effect of calcium-induced differentiation on its mRNA levels. Finally, we examined the role of Cai in regulating both the initial rise in Cai after the switch to higher Cao and the activity of the nonspecific cation channel through which calcium influx occurs. Our data indicate that the acute Cai response to Cao is lost as the cells differentiate and increase their basal Cai. These data correlated with the decrease in CaR mRNA levels in cells grown in low calcium. However, calcium influx as measured by 45Ca uptake increased with differentiation in 1.2mM calcium, consistent with the increase in CaR mRNA in these cells as well as the calcium-induced opening of the nonspecific cation channels. We conclude that the keratinocyte contains a CaR that regulates both the initial release of Cai from intracellular stores and the subsequent increase in calcium flux through nonspecific calcium channels. A rising level of Cai may turn off the release of calcium from intracellular stores while potentiating the influx through the nonspecific cation channels. Differentiation of keratinocytes appears to increase the CaR, which may facilitate the maintenance of the high Cai required for differentiation.

Full Text

The Full Text of this article is available as a PDF (452.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Bezanilla F. Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol. 1974 May;63(5):533–552. doi: 10.1085/jgp.63.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basset-Séguin N., Culard J. F., Kerai C., Bernard F., Watrin A., Demaille J., Guilhou J. J. Reconstituted skin in culture: a simple method with optimal differentiation. Differentiation. 1990 Sep;44(3):232–238. doi: 10.1111/j.1432-0436.1990.tb00622.x. [DOI] [PubMed] [Google Scholar]
  3. Brown E. M., Chen C. J., Kifor O., Leboff M. S., el-Hajj G., Fajtova V., Rubin L. T. Ca2(+)-sensing, second messengers, and the control of parathyroid hormone secretion. Cell Calcium. 1990 May;11(5):333–337. doi: 10.1016/0143-4160(90)90035-s. [DOI] [PubMed] [Google Scholar]
  4. Brown E. M., Gamba G., Riccardi D., Lombardi M., Butters R., Kifor O., Sun A., Hediger M. A., Lytton J., Hebert S. C. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993 Dec 9;366(6455):575–580. doi: 10.1038/366575a0. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Eckert R. L. Structure, function, and differentiation of the keratinocyte. Physiol Rev. 1989 Oct;69(4):1316–1346. doi: 10.1152/physrev.1989.69.4.1316. [DOI] [PubMed] [Google Scholar]
  7. Garrett J. E., Capuano I. V., Hammerland L. G., Hung B. C., Brown E. M., Hebert S. C., Nemeth E. F., Fuller F. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J Biol Chem. 1995 May 26;270(21):12919–12925. doi: 10.1074/jbc.270.21.12919. [DOI] [PubMed] [Google Scholar]
  8. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  9. Hennings H., Holbrook K. A. Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp Cell Res. 1983 Jan;143(1):127–142. doi: 10.1016/0014-4827(83)90115-5. [DOI] [PubMed] [Google Scholar]
  10. Hennings H., Michael D., Cheng C., Steinert P., Holbrook K., Yuspa S. H. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell. 1980 Jan;19(1):245–254. doi: 10.1016/0092-8674(80)90406-7. [DOI] [PubMed] [Google Scholar]
  11. Hohl D., Lichti U., Breitkreutz D., Steinert P. M., Roop D. R. Transcription of the human loricrin gene in vitro is induced by calcium and cell density and suppressed by retinoic acid. J Invest Dermatol. 1991 Apr;96(4):414–418. doi: 10.1111/1523-1747.ep12469779. [DOI] [PubMed] [Google Scholar]
  12. Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaken S., Yuspa S. H. Early signals for keratinocyte differentiation: role of Ca2+-mediated inositol lipid metabolism in normal and neoplastic epidermal cells. Carcinogenesis. 1988 Jun;9(6):1033–1038. doi: 10.1093/carcin/9.6.1033. [DOI] [PubMed] [Google Scholar]
  14. Kruszewski F. H., Hennings H., Tucker R. W., Yuspa S. H. Differences in the regulation of intracellular calcium in normal and neoplastic keratinocytes are not caused by ras gene mutations. Cancer Res. 1991 Aug 15;51(16):4206–4212. [PubMed] [Google Scholar]
  15. Kruszewski F. H., Hennings H., Yuspa S. H., Tucker R. W. Regulation of intracellular free calcium in normal murine keratinocytes. Am J Physiol. 1991 Nov;261(5 Pt 1):C767–C773. doi: 10.1152/ajpcell.1991.261.5.C767. [DOI] [PubMed] [Google Scholar]
  16. Lee E., Yuspa S. H. Aluminum fluoride stimulates inositol phosphate metabolism and inhibits expression of differentiation markers in mouse keratinocytes. J Cell Physiol. 1991 Jul;148(1):106–115. doi: 10.1002/jcp.1041480113. [DOI] [PubMed] [Google Scholar]
  17. Li L., Kruszewski F. H., Punnonen K., Tucker R. W., Yuspa S. H., Hennings H. Strontium induces murine keratinocyte differentiation in vitro in the presence of serum and calcium. J Cell Physiol. 1993 Mar;154(3):643–653. doi: 10.1002/jcp.1041540324. [DOI] [PubMed] [Google Scholar]
  18. Mauro T. M., Isseroff R. R., Lasarow R., Pappone P. A. Ion channels are linked to differentiation in keratinocytes. J Membr Biol. 1993 Mar;132(3):201–209. doi: 10.1007/BF00235738. [DOI] [PubMed] [Google Scholar]
  19. Mauro T. M., Pappone P. A., Isseroff R. R. Extracellular calcium affects the membrane currents of cultured human keratinocytes. J Cell Physiol. 1990 Apr;143(1):13–20. doi: 10.1002/jcp.1041430103. [DOI] [PubMed] [Google Scholar]
  20. Moscat J., Fleming T. P., Molloy C. J., Lopez-Barahona M., Aaronson S. A. The calcium signal for Balb/MK keratinocyte terminal differentiation induces sustained alterations in phosphoinositide metabolism without detectable protein kinase C activation. J Biol Chem. 1989 Jul 5;264(19):11228–11235. [PubMed] [Google Scholar]
  21. Muff R., Nemeth E. F., Haller-Brem S., Fischer J. A. Regulation of hormone secretion and cytosolic Ca2+ by extracellular Ca2+ in parathyroid cells and C-cells: role of voltage-sensitive Ca2+ channels. Arch Biochem Biophys. 1988 Aug 15;265(1):128–135. doi: 10.1016/0003-9861(88)90378-5. [DOI] [PubMed] [Google Scholar]
  22. Nemeth E. F. Regulation of cytosolic calcium by extracellular divalent cations in C-cells and parathyroid cells. Cell Calcium. 1990 May;11(5):323–327. doi: 10.1016/0143-4160(90)90033-q. [DOI] [PubMed] [Google Scholar]
  23. Nemeth E. F., Scarpa A. Rapid mobilization of cellular Ca2+ in bovine parathyroid cells evoked by extracellular divalent cations. Evidence for a cell surface calcium receptor. J Biol Chem. 1987 Apr 15;262(11):5188–5196. [PubMed] [Google Scholar]
  24. Pillai S., Bikle D. D. Adenosine triphosphate stimulates phosphoinositide metabolism, mobilizes intracellular calcium, and inhibits terminal differentiation of human epidermal keratinocytes. J Clin Invest. 1992 Jul;90(1):42–51. doi: 10.1172/JCI115854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pillai S., Bikle D. D., Hincenbergs M., Elias P. M. Biochemical and morphological characterization of growth and differentiation of normal human neonatal keratinocytes in a serum-free medium. J Cell Physiol. 1988 Feb;134(2):229–237. doi: 10.1002/jcp.1041340208. [DOI] [PubMed] [Google Scholar]
  26. Pillai S., Bikle D. D. Lanthanum influx into cultured human keratinocytes: effect on calcium flux and terminal differentiation. J Cell Physiol. 1992 Jun;151(3):623–629. doi: 10.1002/jcp.1041510323. [DOI] [PubMed] [Google Scholar]
  27. Pillai S., Bikle D. D., Mancianti M. L., Cline P., Hincenbergs M. Calcium regulation of growth and differentiation of normal human keratinocytes: modulation of differentiation competence by stages of growth and extracellular calcium. J Cell Physiol. 1990 May;143(2):294–302. doi: 10.1002/jcp.1041430213. [DOI] [PubMed] [Google Scholar]
  28. Pillai S., Bikle D. D., Mancianti M. L., Hincenbergs M. Uncoupling of the calcium-sensing mechanism and differentiation in squamous carcinoma cell lines. Exp Cell Res. 1991 Feb;192(2):567–573. doi: 10.1016/0014-4827(91)90077-8. [DOI] [PubMed] [Google Scholar]
  29. Pillai S., Bikle D. D. Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: differences in the mode of action of extracellular calcium and 1,25 dihydroxyvitamin D3. J Cell Physiol. 1991 Jan;146(1):94–100. doi: 10.1002/jcp.1041460113. [DOI] [PubMed] [Google Scholar]
  30. Pollak M. R., Brown E. M., Chou Y. H., Hebert S. C., Marx S. J., Steinmann B., Levi T., Seidman C. E., Seidman J. G. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993 Dec 31;75(7):1297–1303. doi: 10.1016/0092-8674(93)90617-y. [DOI] [PubMed] [Google Scholar]
  31. Reiss M., Lipsey L. R., Zhou Z. L. Extracellular calcium-dependent regulation of transmembrane calcium fluxes in murine keratinocytes. J Cell Physiol. 1991 May;147(2):281–291. doi: 10.1002/jcp.1041470213. [DOI] [PubMed] [Google Scholar]
  32. Rice R. H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979 Nov;18(3):681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
  33. Sharpe G. R., Gillespie J. I., Greenwell J. R. An increase in intracellular free calcium is an early event during differentiation of cultured human keratinocytes. FEBS Lett. 1989 Aug 28;254(1-2):25–28. doi: 10.1016/0014-5793(89)81002-6. [DOI] [PubMed] [Google Scholar]
  34. Shoback D. M., Membreno L. A., McGhee J. G. High calcium and other divalent cations increase inositol trisphosphate in bovine parathyroid cells. Endocrinology. 1988 Jul;123(1):382–389. doi: 10.1210/endo-123-1-382. [DOI] [PubMed] [Google Scholar]
  35. Talwar H. S., Fisher G. J., Harris V. A., Voorhees J. J. Agonist-induced hydrolysis of phosphoinositides and formation of 1,2-diacylglycerol in adult human keratinocytes. J Invest Dermatol. 1989 Aug;93(2):241–245. doi: 10.1111/1523-1747.ep12277581. [DOI] [PubMed] [Google Scholar]
  36. Tang W., Ziboh V. A., Isseroff R., Martinez D. Turnover of inositol phospholipids in cultured murine keratinocytes: possible involvement of inositol triphosphate in cellular differentiation. J Invest Dermatol. 1988 Jan;90(1):37–43. doi: 10.1111/1523-1747.ep12462536. [DOI] [PubMed] [Google Scholar]
  37. Watt F. M. Keratinocyte cultures: an experimental model for studying how proliferation and terminal differentiation are co-ordinated in the epidermis. J Cell Sci. 1988 Aug;90(Pt 4):525–529. doi: 10.1242/jcs.90.4.525. [DOI] [PubMed] [Google Scholar]
  38. Yuspa S. H., Kilkenny A. E., Steinert P. M., Roop D. R. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol. 1989 Sep;109(3):1207–1217. doi: 10.1083/jcb.109.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES