Abstract
The role of the glomerular visceral epithelial cell in the physiologic turnover and pathologic breakdown of the glomerular extracellular matrix has remained largely unexplored. In this study a 98-kD neutral proteinase secreted by cultured rat visceral glomerular epithelial cells was shown to be a calcium, zinc-dependent enzyme secreted in latent form. In addition, the protein was heavily glycosylated and demonstrated proteolytic activity against Type I gelatin, Type IV collagen gelatin, and fibronectin. The similarity in molecular mass and substrate specificities to the 92-kD human matrix metalloproteinase-9 (MMP-9, or gelatinase B) suggested the identity of this activity, which was confirmed by immunoprecipitation and Northern blot analysis. The differences in molecular mass (98 vs. 92 kD) were not due to species-specific differences in glycosylation patterns, since cultured rat peritoneal macrophages secreted MMP-9 as a 92-kD enzyme. Furthermore, transfection of the human MMP-9 cDNA into rat glomerular epithelial cells yielded the 98-kD product. Using a specific monoclonal anti-MMP-9 antibody and in situ reverse transcription (ISRT) analysis of MMP-9 mRNA, the expression of this enzyme was evaluated in vivo. Normal rat glomeruli expressed little immunohistochemical or ISRT staining for MMP-9, while in rats with passive Heymann nephritis there was a major increase in MMP-9 protein and mRNA staining within the visceral epithelial cells. The temporal patterns of MMP-9 expression correlated with the period of proteinuria associated with this model, suggesting that a causal relationship may exist between GEC MMP-9 expression and changes in glomerular capillary permeability.
Full Text
The Full Text of this article is available as a PDF (383.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baricos W. H., Murphy G., Zhou Y. W., Nguyen H. H., Shah S. V. Degradation of glomerular basement membrane by purified mammalian metalloproteinases. Biochem J. 1988 Sep 1;254(2):609–612. doi: 10.1042/bj2540609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baricos W. H., Shah S. V. Proteolytic enzymes as mediators of glomerular injury. Kidney Int. 1991 Aug;40(2):161–173. doi: 10.1038/ki.1991.196. [DOI] [PubMed] [Google Scholar]
- Davies B., Brown P. D., East N., Crimmin M. J., Balkwill F. R. A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res. 1993 May 1;53(9):2087–2091. [PubMed] [Google Scholar]
- Davies M., Barrett A. J., Travis J., Sanders E., Coles G. A. The degradation of human glomerular basement membrane with purified lysosomal proteinases: evidence for the pathogenic role of the polymorphonuclear leucocyte in glomerulonephritis. Clin Sci Mol Med. 1978 Mar;54(3):233–240. doi: 10.1042/cs0540233. [DOI] [PubMed] [Google Scholar]
- Davies M., Coles G. A., Hughes K. T. Glomerular basement membrane injury by neutrophil and monocyte neutral proteinases. Ren Physiol. 1980;3(1-6):106–111. doi: 10.1159/000172748. [DOI] [PubMed] [Google Scholar]
- Davies M., Martin J., Thomas G. J., Lovett D. H. Proteinases and glomerular matrix turnover. Kidney Int. 1992 Mar;41(3):671–678. doi: 10.1038/ki.1992.103. [DOI] [PubMed] [Google Scholar]
- Floege J., Johnson R. J., Alpers C. E., Fatemi-Nainie S., Richardson C. A., Gordon K., Couser W. G. Visceral glomerular epithelial cells can proliferate in vivo and synthesize platelet-derived growth factor B-chain. Am J Pathol. 1993 Feb;142(2):637–650. [PMC free article] [PubMed] [Google Scholar]
- Johnson R. J., Couser W. G., Alpers C. E., Vissers M., Schulze M., Klebanoff S. J. The human neutrophil serine proteinases, elastase and cathepsin G, can mediate glomerular injury in vivo. J Exp Med. 1988 Sep 1;168(3):1169–1174. doi: 10.1084/jem.168.3.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson R. J., Couser W. G., Chi E. Y., Adler S., Klebanoff S. J. New mechanism for glomerular injury. Myeloperoxidase-hydrogen peroxide-halide system. J Clin Invest. 1987 May;79(5):1379–1387. doi: 10.1172/JCI112965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson R. J., Klebanoff S. J., Ochi R. F., Adler S., Baker P., Sparks L., Couser W. G. Participation of the myeloperoxidase-H2O2-halide system in immune complex nephritis. Kidney Int. 1987 Sep;32(3):342–349. doi: 10.1038/ki.1987.215. [DOI] [PubMed] [Google Scholar]
- Johnson R. J., Lovett D., Lehrer R. I., Couser W. G., Klebanoff S. J. Role of oxidants and proteases in glomerular injury. Kidney Int. 1994 Feb;45(2):352–359. doi: 10.1038/ki.1994.45. [DOI] [PubMed] [Google Scholar]
- Johnson R., Yamabe H., Chen Y. P., Campbell C., Gordon K., Baker P., Lovett D., Couser W. G. Glomerular epithelial cells secrete a glomerular basement membrane-degrading metalloproteinase. J Am Soc Nephrol. 1992 Mar;2(9):1388–1397. doi: 10.1681/ASN.V291388. [DOI] [PubMed] [Google Scholar]
- Kanwar Y. S., Linker A., Farquhar M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980 Aug;86(2):688–693. doi: 10.1083/jcb.86.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleiner D. E., Stetler-Stevenson W. G. Quantitative zymography: detection of picogram quantities of gelatinases. Anal Biochem. 1994 May 1;218(2):325–329. doi: 10.1006/abio.1994.1186. [DOI] [PubMed] [Google Scholar]
- Le Q., Shah S., Nguyen H., Cortez S., Baricos W. A novel metalloproteinase present in freshly isolated rat glomeruli. Am J Physiol. 1991 Apr;260(4 Pt 2):F555–F561. doi: 10.1152/ajprenal.1991.260.4.F555. [DOI] [PubMed] [Google Scholar]
- Lee L. K., Pollock A. S., Lovett D. H. Asymmetric origins of the mature glomerular basement membrane. J Cell Physiol. 1993 Oct;157(1):169–177. doi: 10.1002/jcp.1041570122. [DOI] [PubMed] [Google Scholar]
- Marti H. P., Lee L., Kashgarian M., Lovett D. H. Transforming growth factor-beta 1 stimulates glomerular mesangial cell synthesis of the 72-kd type IV collagenase. Am J Pathol. 1994 Jan;144(1):82–94. [PMC free article] [PubMed] [Google Scholar]
- Martin J., Lovett D. H., Gemsa D., Sterzel R. B., Davies M. Enhancement of glomerular mesangial cell neutral proteinase secretion by macrophages: role of interleukin 1. J Immunol. 1986 Jul 15;137(2):525–529. [PubMed] [Google Scholar]
- Masure S., Nys G., Fiten P., Van Damme J., Opdenakker G. Mouse gelatinase B. cDNA cloning, regulation of expression and glycosylation in WEHI-3 macrophages and gene organisation. Eur J Biochem. 1993 Nov 15;218(1):129–141. doi: 10.1111/j.1432-1033.1993.tb18359.x. [DOI] [PubMed] [Google Scholar]
- Morodomi T., Ogata Y., Sasaguri Y., Morimatsu M., Nagase H. Purification and characterization of matrix metalloproteinase 9 from U937 monocytic leukaemia and HT1080 fibrosarcoma cells. Biochem J. 1992 Jul 15;285(Pt 2):603–611. doi: 10.1042/bj2850603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada Y., Gonoji Y., Naka K., Tomita K., Nakanishi I., Iwata K., Yamashita K., Hayakawa T. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem. 1992 Oct 25;267(30):21712–21719. [PubMed] [Google Scholar]
- Partridge C. A., Jeffrey J. J., Malik A. B. A 96-kDa gelatinase induced by TNF-alpha contributes to increased microvascular endothelial permeability. Am J Physiol. 1993 Nov;265(5 Pt 1):L438–L447. doi: 10.1152/ajplung.1993.265.5.L438. [DOI] [PubMed] [Google Scholar]
- Rosenzweig L. J., Kanwar Y. S. Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminoglycans results in increased permeability of the glomerular basement membrane to 125I-bovine serum albumin. Lab Invest. 1982 Aug;47(2):177–184. [PubMed] [Google Scholar]
- Salant D. J., Darby C., Couser W. G. Experimental membranous glomerulonephritis in rats. Quantitative studies of glomerular immune deposit formation in isolated glomeruli and whole animals. J Clin Invest. 1980 Jul;66(1):71–81. doi: 10.1172/JCI109837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shah S. V. Evidence suggesting a role for hydroxyl radical in passive Heymann nephritis in rats. Am J Physiol. 1988 Mar;254(3 Pt 2):F337–F344. doi: 10.1152/ajprenal.1988.254.3.F337. [DOI] [PubMed] [Google Scholar]
- Taub M., Chuman L., Saier M. H., Jr, Sato G. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3338–3342. doi: 10.1073/pnas.76.7.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vissers M. C., Winterbourn C. C. Gelatinase contributes to the degradation of glomerular basement membrane collagen by human neutrophils. Coll Relat Res. 1988 Mar;8(2):113–122. doi: 10.1016/s0174-173x(88)80023-2. [DOI] [PubMed] [Google Scholar]
- Watanabe K., Kinoshita S., Nakagawa H. Gelatinase secretion by glomerular epithelial cells. Nephron. 1990;56(4):405–409. doi: 10.1159/000186184. [DOI] [PubMed] [Google Scholar]
- Xie B., Bucana C. D., Fidler I. J. Density-dependent induction of 92-kd type IV collagenase activity in cultures of A431 human epidermoid carcinoma cells. Am J Pathol. 1994 May;144(5):1058–1067. [PMC free article] [PubMed] [Google Scholar]