Abstract
Early prediction of outcome after global hypoxia of the brain requires accurate determination of the nature and extent of neurological injury and is cardinal for patient management. Cerebral metabolites of gray and white matter were determined sequentially after near-drowning using quantitative 1H nuclear magnetic resonance spectroscopy (MRS) in 16 children. Significant metabolite abnormalities were demonstrated in all patients compared with their age-matched normal controls. Severity of brain damage was quantified from metabolite concentrations and ratios. Loss of N-acetylaspartate, a putative neuronal marker, from gray matter preceded that observed in white matter and was more severe. Total creatine decreased, while lactate and glutamine/glutamate concentrations increased. Changes progressed with time after injury. A spectroscopic prognosis index distinguished between good outcome (n = 5) and poor outcome (n = 11) with one false negative (bad outcome after borderline MRS result) and no false positive results (100% specificity). The distinction was made with 90% sensitivity early (after 48 h) and became 100% later (by days 3 and 4). This compared with 50-75% specificity and 70-100% sensitivity based upon single clinical criteria. MRS performed sequentially in occipital gray matter provides useful objective information which can significantly enhance the ability to establish prognosis after near-drowning.
Full Text
The Full Text of this article is available as a PDF (316.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames A., 3rd, Wright R. L., Kowada M., Thurston J. M., Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968 Feb;52(2):437–453. [PMC free article] [PubMed] [Google Scholar]
- Ashwal S., Schneider S., Tomasi L., Thompson J. Prognostic implications of hyperglycemia and reduced cerebral blood flow in childhood near-drowning. Neurology. 1990 May;40(5):820–823. doi: 10.1212/wnl.40.5.820. [DOI] [PubMed] [Google Scholar]
- Azzopardi D., Wyatt J. S., Cady E. B., Delpy D. T., Baudin J., Stewart A. L., Hope P. L., Hamilton P. A., Reynolds E. O. Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res. 1989 May;25(5):445–451. doi: 10.1203/00006450-198905000-00004. [DOI] [PubMed] [Google Scholar]
- Barker P. B., Gillard J. H., van Zijl P. C., Soher B. J., Hanley D. F., Agildere A. M., Oppenheimer S. M., Bryan R. N. Acute stroke: evaluation with serial proton MR spectroscopic imaging. Radiology. 1994 Sep;192(3):723–732. doi: 10.1148/radiology.192.3.8058940. [DOI] [PubMed] [Google Scholar]
- Barker P. B., Soher B. J., Blackband S. J., Chatham J. C., Mathews V. P., Bryan R. N. Quantitation of proton NMR spectra of the human brain using tissue water as an internal concentration reference. NMR Biomed. 1993 Jan-Feb;6(1):89–94. doi: 10.1002/nbm.1940060114. [DOI] [PubMed] [Google Scholar]
- Behar K. L., Ogino T. Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain. Magn Reson Med. 1993 Jul;30(1):38–44. doi: 10.1002/mrm.1910300107. [DOI] [PubMed] [Google Scholar]
- Birken D. L., Oldendorf W. H. N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev. 1989 Spring;13(1):23–31. doi: 10.1016/s0149-7634(89)80048-x. [DOI] [PubMed] [Google Scholar]
- Blamire A. M., Graham G. D., Rothman D. L., Prichard J. W. Proton spectroscopy of human stroke: assessment of transverse relaxation times and partial volume effects in single volume steam MRS. Magn Reson Imaging. 1994;12(8):1227–1235. doi: 10.1016/0730-725x(94)90087-8. [DOI] [PubMed] [Google Scholar]
- Bratton S. L., Jardine D. S., Morray J. P. Serial neurologic examinations after near drowning and outcome. Arch Pediatr Adolesc Med. 1994 Feb;148(2):167–170. doi: 10.1001/archpedi.1994.02170020053008. [DOI] [PubMed] [Google Scholar]
- Chan L., Slater J., Hasbargen J., Herndon D. N., Veech R. L., Wolf S. Neurocardiac toxicity of racemic D,L-lactate fluids. Integr Physiol Behav Sci. 1994 Oct-Dec;29(4):383–394. doi: 10.1007/BF02691358. [DOI] [PubMed] [Google Scholar]
- Conn A. W., Montes J. E., Barker G. A., Edmonds J. F. Cerebral salvage in near-drowning following neurological classification by triage. Can Anaesth Soc J. 1980 May;27(3):201–210. doi: 10.1007/BF03007429. [DOI] [PubMed] [Google Scholar]
- Connors R., Frewen T. C., Kissoon N., Kronick J., Sommerauer J., Lee R., Singh N., Tiffin N., Brown T. Relationship of cross-brain oxygen content difference, cerebral blood flow, and metabolic rate to neurologic outcome after near-drowning. J Pediatr. 1992 Dec;121(6):839–844. doi: 10.1016/s0022-3476(05)80325-7. [DOI] [PubMed] [Google Scholar]
- Danielsen E. R., Henriksen O. Absolute quantitative proton NMR spectroscopy based on the amplitude of the local water suppression pulse. Quantification of brain water and metabolites. NMR Biomed. 1994 Nov;7(7):311–318. doi: 10.1002/nbm.1940070704. [DOI] [PubMed] [Google Scholar]
- Duffy T. E., Nelson S. R., Lowry O. H. Cerebral carbohydrate metabolism during acute hypoxia and recovery. J Neurochem. 1972 Apr;19(4):959–977. doi: 10.1111/j.1471-4159.1972.tb01417.x. [DOI] [PubMed] [Google Scholar]
- Edgren E., Hedstrand U., Kelsey S., Sutton-Tyrrell K., Safar P. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet. 1994 Apr 30;343(8905):1055–1059. doi: 10.1016/s0140-6736(94)90179-1. [DOI] [PubMed] [Google Scholar]
- Gideon P., Sperling B., Arlien-Søborg P., Olsen T. S., Henriksen O. Long-term follow-up of cerebral infarction patients with proton magnetic resonance spectroscopy. Stroke. 1994 May;25(5):967–973. doi: 10.1161/01.str.25.5.967. [DOI] [PubMed] [Google Scholar]
- Gill S. S., Small R. K., Thomas D. G., Patel P., Porteous R., Van Bruggen N., Gadian D. G., Kauppinen R. A., Williams S. R. Brain metabolites as 1H NMR markers of neuronal and glial disorders. NMR Biomed. 1989 Dec;2(5-6):196–200. doi: 10.1002/nbm.1940020505. [DOI] [PubMed] [Google Scholar]
- Groenendaal F., Veenhoven R. H., van der Grond J., Jansen G. H., Witkamp T. D., de Vries L. S. Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res. 1994 Feb;35(2):148–151. doi: 10.1203/00006450-199402000-00004. [DOI] [PubMed] [Google Scholar]
- Hope P. L., Costello A. M., Cady E. B., Delpy D. T., Tofts P. S., Chu A., Hamilton P. A., Reynolds E. O., Wilkie D. R. Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet. 1984 Aug 18;2(8399):366–370. doi: 10.1016/s0140-6736(84)90539-7. [DOI] [PubMed] [Google Scholar]
- Jennett B., Bond M. Assessment of outcome after severe brain damage. Lancet. 1975 Mar 1;1(7905):480–484. doi: 10.1016/s0140-6736(75)92830-5. [DOI] [PubMed] [Google Scholar]
- Kanamori K., Ross B. D. In vivo activity of glutaminase in the brain of hyperammonaemic rats measured by 15N nuclear magnetic resonance. Biochem J. 1995 Jan 1;305(Pt 1):329–336. doi: 10.1042/bj3050329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kreis R., Ernst T., Ross B. D. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med. 1993 Oct;30(4):424–437. doi: 10.1002/mrm.1910300405. [DOI] [PubMed] [Google Scholar]
- Kreis R., Farrow N., Ross B. D. Diagnosis of hepatic encephalopathy by proton magnetic resonance spectroscopy. Lancet. 1990 Sep 8;336(8715):635–636. doi: 10.1016/0140-6736(90)93439-v. [DOI] [PubMed] [Google Scholar]
- Kreis R., Farrow N., Ross B. D. Localized 1H NMR spectroscopy in patients with chronic hepatic encephalopathy. Analysis of changes in cerebral glutamine, choline and inositols. NMR Biomed. 1991 Apr;4(2):109–116. doi: 10.1002/nbm.1940040214. [DOI] [PubMed] [Google Scholar]
- Laptook A. R., Corbett R. J., Uauy R., Mize C., Mendelsohn D., Nunnally R. L. Use of 31P magnetic resonance spectroscopy to characterize evolving brain damage after perinatal asphyxia. Neurology. 1989 May;39(5):709–712. doi: 10.1212/wnl.39.5.709. [DOI] [PubMed] [Google Scholar]
- Levy D. E., Caronna J. J., Singer B. H., Lapinski R. H., Frydman H., Plum F. Predicting outcome from hypoxic-ischemic coma. JAMA. 1985 Mar 8;253(10):1420–1426. [PubMed] [Google Scholar]
- Lorek A., Takei Y., Cady E. B., Wyatt J. S., Penrice J., Edwards A. D., Peebles D., Wylezinska M., Owen-Reece H., Kirkbride V. Delayed ("secondary") cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res. 1994 Dec;36(6):699–706. doi: 10.1203/00006450-199412000-00003. [DOI] [PubMed] [Google Scholar]
- Magistretti P. J., Sorg O., Yu N., Martin J. L., Pellerin L. Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci. 1993;15(3-5):306–312. doi: 10.1159/000111349. [DOI] [PubMed] [Google Scholar]
- Michaelis T., Merboldt K. D., Bruhn H., Hänicke W., Frahm J. Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology. 1993 Apr;187(1):219–227. doi: 10.1148/radiology.187.1.8451417. [DOI] [PubMed] [Google Scholar]
- Modell J. H. Drowning. N Engl J Med. 1993 Jan 28;328(4):253–256. doi: 10.1056/NEJM199301283280407. [DOI] [PubMed] [Google Scholar]
- Orlowski J. P. Drowning, near-drowning, and ice-water submersions. Pediatr Clin North Am. 1987 Feb;34(1):75–92. doi: 10.1016/s0031-3955(16)36182-x. [DOI] [PubMed] [Google Scholar]
- Ottersen O. P., Zhang N., Walberg F. Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience. 1992;46(3):519–534. doi: 10.1016/0306-4522(92)90141-n. [DOI] [PubMed] [Google Scholar]
- Peden C. J., Cowan F. M., Bryant D. J., Sargentoni J., Cox I. J., Menon D. K., Gadian D. G., Bell J. D., Dubowitz L. M. Proton MR spectroscopy of the brain in infants. J Comput Assist Tomogr. 1990 Nov-Dec;14(6):886–894. doi: 10.1097/00004728-199011000-00004. [DOI] [PubMed] [Google Scholar]
- Peden C. J., Rutherford M. A., Sargentoni J., Cox I. J., Bryant D. J., Dubowitz L. M. Proton spectroscopy of the neonatal brain following hypoxic-ischaemic injury. Dev Med Child Neurol. 1993 Jun;35(6):502–510. doi: 10.1111/j.1469-8749.1993.tb11680.x. [DOI] [PubMed] [Google Scholar]
- Peres M., Bourgeois D., Roussel S., Lefur Y., Devoulon P., Remy C., Barrere B., Decorps M., Pinard E., Riche D. Two-dimensional 1H spectroscopic imaging for evaluating the local metabolic response to focal ischemia in the conscious rat. NMR Biomed. 1992 Jan-Feb;5(1):11–19. doi: 10.1002/nbm.1940050104. [DOI] [PubMed] [Google Scholar]
- Petroff O. A., Graham G. D., Blamire A. M., al-Rayess M., Rothman D. L., Fayad P. B., Brass L. M., Shulman R. G., Prichard J. W. Spectroscopic imaging of stroke in humans: histopathology correlates of spectral changes. Neurology. 1992 Jul;42(7):1349–1354. doi: 10.1212/wnl.42.7.1349. [DOI] [PubMed] [Google Scholar]
- Roth S. C., Edwards A. D., Cady E. B., Delpy D. T., Wyatt J. S., Azzopardi D., Baudin J., Townsend J., Stewart A. L., Reynolds E. O. Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year. Dev Med Child Neurol. 1992 Apr;34(4):285–295. doi: 10.1111/j.1469-8749.1992.tb11432.x. [DOI] [PubMed] [Google Scholar]
- Urenjak J., Williams S. R., Gadian D. G., Noble M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem. 1992 Jul;59(1):55–61. doi: 10.1111/j.1471-4159.1992.tb08875.x. [DOI] [PubMed] [Google Scholar]
- Veech R. L. The metabolism of lactate. NMR Biomed. 1991 Apr;4(2):53–58. doi: 10.1002/nbm.1940040204. [DOI] [PubMed] [Google Scholar]