Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Mar 1;97(5):1257–1266. doi: 10.1172/JCI118541

A mutation in the lipoprotein lipase gene is the molecular basis of chylomicronemia in a colony of domestic cats.

D G Ginzinger 1, M E Lewis 1, Y Ma 1, B R Jones 1, G Liu 1, S D Jones 1
PMCID: PMC507179  PMID: 8636438

Abstract

Members of a domestic cat colony with chylomicronemia share many phenotypic features with human lipoprotein lipase (LPL) deficiency. Biochemical analysis reveals that these cats do have defective LPL catalytic activity and have a clinical phenotype very similar to human LPL deficiency. To determine the molecular basis underlying this biochemical phenotype, we have cloned the normal and affected cat LPL cDNAs and shown that the affected cat has a nucleotide change resulting in a substitution of arginine for glycine at residue 412 in exon 8. In vitro mutagenesis and expression studies, in addition to segregation analysis, have shown that this DNA change is the cause of LPL deficiency in this cat colony. Reduced body mass, growth rates, and increased stillbirth rates are observed in cats homozygous for this mutation. These findings show that this LPL deficient cat can serve as an animal model of human LPL deficiency and will be useful for in vivo investigation of the relationship between triglyceride rich lipoproteins and atherogenic risk and for the assessment of new approaches for treatment of LPL deficiency, including gene therapy.

Full Text

The Full Text of this article is available as a PDF (777.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babirak S. P., Iverius P. H., Fujimoto W. Y., Brunzell J. D. Detection and characterization of the heterozygote state for lipoprotein lipase deficiency. Arteriosclerosis. 1989 May-Jun;9(3):326–334. doi: 10.1161/01.atv.9.3.326. [DOI] [PubMed] [Google Scholar]
  2. Beisiegel U., Weber W., Bengtsson-Olivecrona G. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8342–8346. doi: 10.1073/pnas.88.19.8342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brault D., Noé L., Etienne J., Hamelin J., Raisonnier A., Souli A., Chuat J. C., Dugail I., Quignard-Boulangé A., Lavau M. Sequence of rat lipoprotein lipase-encoding cDNA. Gene. 1992 Nov 16;121(2):237–246. doi: 10.1016/0378-1119(92)90127-b. [DOI] [PubMed] [Google Scholar]
  4. Braun J. E., Severson D. L. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J. 1992 Oct 15;287(Pt 2):337–347. doi: 10.1042/bj2870337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cai S. J., Wong D. M., Chen S. H., Chan L. Structure of the human hepatic triglyceride lipase gene. Biochemistry. 1989 Nov 14;28(23):8966–8971. doi: 10.1021/bi00449a002. [DOI] [PubMed] [Google Scholar]
  6. Chapman M. J. Animal lipoproteins: chemistry, structure, and comparative aspects. J Lipid Res. 1980 Sep;21(7):789–853. [PubMed] [Google Scholar]
  7. Chappell D. A., Inoue I., Fry G. L., Pladet M. W., Bowen S. L., Iverius P. H., Lalouel J. M., Strickland D. K. Cellular catabolism of normal very low density lipoproteins via the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor is induced by the C-terminal domain of lipoprotein lipase. J Biol Chem. 1994 Jul 8;269(27):18001–18006. [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Coleman T., Seip R. L., Gimble J. M., Lee D., Maeda N., Semenkovich C. F. COOH-terminal disruption of lipoprotein lipase in mice is lethal in homozygotes, but heterozygotes have elevated triglycerides and impaired enzyme activity. J Biol Chem. 1995 May 26;270(21):12518–12525. doi: 10.1074/jbc.270.21.12518. [DOI] [PubMed] [Google Scholar]
  10. Cooper D. A., Lu S. C., Viswanath R., Freiman R. N., Bensadoun A. The structure and complete nucleotide sequence of the avian lipoprotein lipase gene. Biochim Biophys Acta. 1992 Jan 6;1129(2):166–171. doi: 10.1016/0167-4781(92)90482-f. [DOI] [PubMed] [Google Scholar]
  11. Datta S., Luo C. C., Li W. H., VanTuinen P., Ledbetter D. H., Brown M. A., Chen S. H., Liu S. W., Chan L. Human hepatic lipase. Cloned cDNA sequence, restriction fragment length polymorphisms, chromosomal localization, and evolutionary relationships with lipoprotein lipase and pancreatic lipase. J Biol Chem. 1988 Jan 25;263(3):1107–1110. [PubMed] [Google Scholar]
  12. Demacker P. N., Hijmans A. G., Stalenhoef A. F., van 't Laar A. Studies on the function of hepatic lipase in the cat after immunological blockade of the enzyme in vivo. Atherosclerosis. 1988 Feb;69(2-3):173–183. doi: 10.1016/0021-9150(88)90012-3. [DOI] [PubMed] [Google Scholar]
  13. Demacker P. N., van Heijst P. J., Hak-Lemmers H. L., Stalenhoef A. F. A study of the lipid transport system in the cat, Felix domesticus. Atherosclerosis. 1987 Jul;66(1-2):113–123. doi: 10.1016/0021-9150(87)90186-9. [DOI] [PubMed] [Google Scholar]
  14. Enerbäck S., Semb H., Bengtsson-Olivecrona G., Carlsson P., Hermansson M. L., Olivecrona T., Bjursell G. Molecular cloning and sequence analysis of cDNA encoding lipoprotein lipase of guinea pig. Gene. 1987;58(1):1–12. doi: 10.1016/0378-1119(87)90023-0. [DOI] [PubMed] [Google Scholar]
  15. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  16. Hara I., Okazaki M. High-performance liquid chromatography of serum lipoproteins. Methods Enzymol. 1986;129:57–78. doi: 10.1016/0076-6879(86)29062-x. [DOI] [PubMed] [Google Scholar]
  17. Hata A., Ridinger D. N., Sutherland S., Emi M., Shuhua Z., Myers R. L., Ren K., Cheng T., Inoue I., Wilson D. E. Binding of lipoprotein lipase to heparin. Identification of five critical residues in two distinct segments of the amino-terminal domain. J Biol Chem. 1993 Apr 25;268(12):8447–8457. [PubMed] [Google Scholar]
  18. Henderson H. E., Ma Y., Hassan M. F., Monsalve M. V., Marais A. D., Winkler F., Gubernator K., Peterson J., Brunzell J. D., Hayden M. R. Amino acid substitution (Ile194----Thr) in exon 5 of the lipoprotein lipase gene causes lipoprotein lipase deficiency in three unrelated probands. Support for a multicentric origin. J Clin Invest. 1991 Jun;87(6):2005–2011. doi: 10.1172/JCI115229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Henderson H. E., Ma Y., Liu M. S., Clark-Lewis I., Maeder D. L., Kastelein J. J., Brunzell J. D., Hayden M. R. Structure-function relationships of lipoprotein lipase: mutation analysis and mutagenesis of the loop region. J Lipid Res. 1993 Sep;34(9):1593–1602. [PubMed] [Google Scholar]
  20. Iverius P. H., Brunzell J. D. Human adipose tissue lipoprotein lipase: changes with feeding and relation to postheparin plasma enzyme. Am J Physiol. 1985 Jul;249(1 Pt 1):E107–E114. doi: 10.1152/ajpendo.1985.249.1.E107. [DOI] [PubMed] [Google Scholar]
  21. Jones B. R., Wallace A., Harding D. R., Hancock W. S., Campbell C. H. Occurrence of idiopathic, familial hyperchylomicronaemia in a cat. Vet Rec. 1983 Jun 4;112(23):543–547. doi: 10.1136/vr.112.23.543. [DOI] [PubMed] [Google Scholar]
  22. Kirchgessner T. G., Svenson K. L., Lusis A. J., Schotz M. C. The sequence of cDNA encoding lipoprotein lipase. A member of a lipase gene family. J Biol Chem. 1987 Jun 25;262(18):8463–8466. [PubMed] [Google Scholar]
  23. Komaromy M. C., Schotz M. C. Cloning of rat hepatic lipase cDNA: evidence for a lipase gene family. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1526–1530. doi: 10.1073/pnas.84.6.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Krapp A., Zhang H., Ginzinger D., Liu M. S., Lindberg A., Olivecrona G., Hayden M. R., Beisiegel U. Structural features in lipoprotein lipase necessary for the mediation of lipoprotein uptake into cells. J Lipid Res. 1995 Nov;36(11):2362–2373. [PubMed] [Google Scholar]
  25. Liu M. S., Jirik F. R., LeBoeuf R. C., Henderson H., Castellani L. W., Lusis A. J., Ma Y., Forsythe I. J., Zhang H., Kirk E. Alteration of lipid profiles in plasma of transgenic mice expressing human lipoprotein lipase. J Biol Chem. 1994 Apr 15;269(15):11417–11424. [PubMed] [Google Scholar]
  26. Ma Y., Henderson H. E., Liu M. S., Zhang H., Forsythe I. J., Clarke-Lewis I., Hayden M. R., Brunzell J. D. Mutagenesis in four candidate heparin binding regions (residues 279-282, 291-304, 390-393, and 439-448) and identification of residues affecting heparin binding of human lipoprotein lipase. J Lipid Res. 1994 Nov;35(11):2049–2059. [PubMed] [Google Scholar]
  27. Mickel F. S., Weidenbach F., Swarovsky B., LaForge K. S., Scheele G. A. Structure of the canine pancreatic lipase gene. J Biol Chem. 1989 Aug 5;264(22):12895–12901. [PubMed] [Google Scholar]
  28. Patsch J. R., Gotto A. M., Jr, Olivercrona T., Eisenberg S. Formation of high density lipoprotein2-like particles during lipolysis of very low density lipoproteins in vitro. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4519–4523. doi: 10.1073/pnas.75.9.4519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Patsch J. R., Prasad S., Gotto A. M., Jr, Patsch W. High density lipoprotein2. Relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipemia, and to the activities of lipoprotein lipase and hepatic lipase. J Clin Invest. 1987 Aug;80(2):341–347. doi: 10.1172/JCI113078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peritz L. N., Brunzell J. D., Harvey-Clarke C., Pritchard P. H., Jones B. R., Hayden M. R. Characterization of a lipoprotein lipase class III type defect in hypertriglyceridemic cats. Clin Invest Med. 1990 Oct;13(5):259–263. [PubMed] [Google Scholar]
  31. Persson B., Bengtsson-Olivecrona G., Enerbäck S., Olivecrona T., Jörnvall H. Structural features of lipoprotein lipase. Lipase family relationships, binding interactions, non-equivalence of lipase cofactors, vitellogenin similarities and functional subdivision of lipoprotein lipase. Eur J Biochem. 1989 Jan 15;179(1):39–45. doi: 10.1111/j.1432-1033.1989.tb14518.x. [DOI] [PubMed] [Google Scholar]
  32. Peterson J., Fujimoto W. Y., Brunzell J. D. Human lipoprotein lipase: relationship of activity, heparin affinity, and conformation as studied with monoclonal antibodies. J Lipid Res. 1992 Aug;33(8):1165–1170. [PubMed] [Google Scholar]
  33. Previato L., Guardamagna O., Dugi K. A., Ronan R., Talley G. D., Santamarina-Fojo S., Brewer H. B., Jr A novel missense mutation in the C-terminal domain of lipoprotein lipase (Glu410-->Val) leads to enzyme inactivation and familial chylomicronemia. J Lipid Res. 1994 Sep;35(9):1552–1560. [PubMed] [Google Scholar]
  34. Reymer P. W., Gagné E., Groenemeyer B. E., Zhang H., Forsyth I., Jansen H., Seidell J. C., Kromhout D., Lie K. E., Kastelein J. A lipoprotein lipase mutation (Asn291Ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis. Nat Genet. 1995 May;10(1):28–34. doi: 10.1038/ng0595-28. [DOI] [PubMed] [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Santamarina-Fojo S., Brewer H. B., Jr The familial hyperchylomicronemia syndrome. New insights into underlying genetic defects. JAMA. 1991 Feb 20;265(7):904–908. [PubMed] [Google Scholar]
  37. Semenkovich C. F., Chen S. H., Wims M., Luo C. C., Li W. H., Chan L. Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation, and evolution. J Lipid Res. 1989 Mar;30(3):423–431. [PubMed] [Google Scholar]
  38. Senda M., Oka K., Brown W. V., Qasba P. K., Furuichi Y. Molecular cloning and sequence of a cDNA coding for bovine lipoprotein lipase. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4369–4373. doi: 10.1073/pnas.84.13.4369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stahnke G., Sprengel R., Augustin J., Will H. Human hepatic triglyceride lipase: cDNA cloning, amino acid sequence and expression in a cultured cell line. Differentiation. 1987;35(1):45–52. doi: 10.1111/j.1432-0436.1987.tb00150.x. [DOI] [PubMed] [Google Scholar]
  40. Thomas C. R., Lowy C. Placental transfer of free fatty acids: factors affecting transfer across the guinea-pig placenta. J Dev Physiol. 1983 Oct;5(5):323–332. [PubMed] [Google Scholar]
  41. Wion K. L., Kirchgessner T. G., Lusis A. J., Schotz M. C., Lawn R. M. Human lipoprotein lipase complementary DNA sequence. Science. 1987 Mar 27;235(4796):1638–1641. doi: 10.1126/science.3823907. [DOI] [PubMed] [Google Scholar]
  42. Zechner R., Newman T. C., Steiner E., Breslow J. L. The structure of the mouse lipoprotein lipase gene: a B1 repetitive element is inserted into the 3' untranslated region of the mRNA. Genomics. 1991 Sep;11(1):62–76. doi: 10.1016/0888-7543(91)90102-k. [DOI] [PubMed] [Google Scholar]
  43. Zoller M. J., Smith M. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. Methods Enzymol. 1987;154:329–350. doi: 10.1016/0076-6879(87)54083-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES