Abstract
In human skeletal muscle, insulin-like growth factor-I (IGF-I) exerts both growth hormone-like (increase in protein synthesis) and insulin-like (decrease in protein degradation and increase in glucose uptake) actions and augments forearm blood flow two- to threefold. This study was designed to address whether (a) the increase in blood flow due to IGF-I could be blocked by an inhibitor of nitric oxide synthase; and (b) the metabolic actions of IGF-I were altered by use of a nitric oxide synthase inhibitor. Forearm blood flow, glucose, lactate, oxygen, nitrite, and phenylalanine balances and phenylalanine kinetics were studied in a total of 17 healthy, adult volunteers after an overnight fast in two different protocols. In protocol 1, after basal samples IGF-I was infused alone for 4 h with samples repeated during the last 30 min. After the 4-h sample period, NG-monomethyl-L-arginine (L-NMMA) was infused into the brachial artery for 2 h to bring flow back to baseline and repeat samples were taken (6 h). In response to IGF-I alone, forearm blood flow rose from 3.8 +/- 1.0 (bas) to 7.9 +/- l.9 (4 h) ml/min/100 ml (P < 0.01) and was reduced back to baseline by L-NMMA at 6 h (P < 0.01). In protocol 1, IGF-I alone increased forearm nitrite release at 4 h (P < 0.03), which was reduced back to baseline by L-NMMA at 6 h (P < 0.05). Despite the reduction in flow with L-NMMA, IGF+L-NMMA yielded increases in glucose uptake (P < 0.005), lactate release (P < 0.04), oxygen uptake (P < 0.01), and a positive shift in phenylalanine balance (P < 0.01) due to both an increase in muscle protein synthesis (P < 0.02) and a decrease in protein degradation (P < 0.03). In protocol 2, L-NMMA was coinfused with IGF-I for 6 h, with the dose titrated to keep blood flow +/- 25% of baseline. Coinfusion of L-NMMA restrained blood flow to baseline and also yielded the same, significant metabolic effects, except that no significant increase in muscle protein synthesis was detected. These observations suggest: (a) that IGF-I increases blood flow through a nitric oxide-dependent mechanism; (b) that total blood flow does not affect the insulin-like response of muscle to IGF-I; and (c) that nitric oxide may be required for the protein synthetic (growth hormone-like) response of muscle to IGF-I.
Full Text
The Full Text of this article is available as a PDF (236.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson E. A., Hoffman R. P., Balon T. W., Sinkey C. A., Mark A. L. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest. 1991 Jun;87(6):2246–2252. doi: 10.1172/JCI115260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balon T. W., Nadler J. L. Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol (1985) 1994 Dec;77(6):2519–2521. doi: 10.1152/jappl.1994.77.6.2519. [DOI] [PubMed] [Google Scholar]
- Baron A. D., Brechtel-Hook G., Johnson A., Hardin D. Skeletal muscle blood flow. A possible link between insulin resistance and blood pressure. Hypertension. 1993 Feb;21(2):129–135. doi: 10.1161/01.hyp.21.2.129. [DOI] [PubMed] [Google Scholar]
- Baron A. D., Brechtel G. Insulin differentially regulates systemic and skeletal muscle vascular resistance. Am J Physiol. 1993 Jul;265(1 Pt 1):E61–E67. doi: 10.1152/ajpendo.1993.265.1.E61. [DOI] [PubMed] [Google Scholar]
- Baron A. D. Hemodynamic actions of insulin. Am J Physiol. 1994 Aug;267(2 Pt 1):E187–E202. doi: 10.1152/ajpendo.1994.267.2.E187. [DOI] [PubMed] [Google Scholar]
- Baron A. D., Steinberg H. O., Chaker H., Leaming R., Johnson A., Brechtel G. Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest. 1995 Aug;96(2):786–792. doi: 10.1172/JCI118124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett E. J., Jahn L. A., Oliveras D. M., Fryburg D. A. Chloroquine does not exert insulin-like actions on human forearm muscle metabolism. Am J Physiol. 1995 May;268(5 Pt 1):E820–E824. doi: 10.1152/ajpendo.1995.268.5.E820. [DOI] [PubMed] [Google Scholar]
- Billiar T. R., Curran R. D., Stuehr D. J., Ferrari F. K., Simmons R. L. Evidence that activation of Kupffer cells results in production of L-arginine metabolites that release cell-associated iron and inhibit hepatocyte protein synthesis. Surgery. 1989 Aug;106(2):364–372. [PubMed] [Google Scholar]
- Billiar T. R. Nitric oxide. Novel biology with clinical relevance. Ann Surg. 1995 Apr;221(4):339–349. doi: 10.1097/00000658-199504000-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calver A., Collier J., Vallance P. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest. 1992 Dec;90(6):2548–2554. doi: 10.1172/JCI116149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark M. G., Colquhoun E. Q., Rattigan S., Dora K. A., Eldershaw T. P., Hall J. L., Ye J. Vascular and endocrine control of muscle metabolism. Am J Physiol. 1995 May;268(5 Pt 1):E797–E812. doi: 10.1152/ajpendo.1995.268.5.E797. [DOI] [PubMed] [Google Scholar]
- Copeland K. C., Nair K. S. Recombinant human insulin-like growth factor-I increases forearm blood flow. J Clin Endocrinol Metab. 1994 Jul;79(1):230–232. doi: 10.1210/jcem.79.1.8027233. [DOI] [PubMed] [Google Scholar]
- Creager M. A., Liang C. S., Coffman J. D. Beta adrenergic-mediated vasodilator response to insulin in the human forearm. J Pharmacol Exp Ther. 1985 Dec;235(3):709–714. [PubMed] [Google Scholar]
- Duling B. R., Damon D. H. An examination of the measurement of flow heterogeneity in striated muscle. Circ Res. 1987 Jan;60(1):1–13. doi: 10.1161/01.res.60.1.1. [DOI] [PubMed] [Google Scholar]
- Elliott T. G., Cockcroft J. R., Groop P. H., Viberti G. C., Ritter J. M. Inhibition of nitric oxide synthesis in forearm vasculature of insulin-dependent diabetic patients: blunted vasoconstriction in patients with microalbuminuria. Clin Sci (Lond) 1993 Dec;85(6):687–693. doi: 10.1042/cs0850687. [DOI] [PubMed] [Google Scholar]
- Endo T., Imaizumi T., Tagawa T., Shiramoto M., Ando S., Takeshita A. Role of nitric oxide in exercise-induced vasodilation of the forearm. Circulation. 1994 Dec;90(6):2886–2890. doi: 10.1161/01.cir.90.6.2886. [DOI] [PubMed] [Google Scholar]
- Frederick J. A., Hasselgren P. O., Davis S., Higashiguchi T., Jacob T. D., Fischer J. E. Nitric oxide may upregulate in vivo hepatic protein synthesis during endotoxemia. Arch Surg. 1993 Feb;128(2):152–157. doi: 10.1001/archsurg.1993.01420140029005. [DOI] [PubMed] [Google Scholar]
- Fryburg D. A., Gelfand R. A., Barrett E. J. Growth hormone acutely stimulates forearm muscle protein synthesis in normal humans. Am J Physiol. 1991 Mar;260(3 Pt 1):E499–E504. doi: 10.1152/ajpendo.1991.260.3.E499. [DOI] [PubMed] [Google Scholar]
- Fryburg D. A., Gelfand R. A., Jahn L. A., Oliveras D., Sherwin R. S., Sacca L., Barrett E. J. Effects of epinephrine on human muscle glucose and protein metabolism. Am J Physiol. 1995 Jan;268(1 Pt 1):E55–E59. doi: 10.1152/ajpendo.1995.268.1.E55. [DOI] [PubMed] [Google Scholar]
- Fryburg D. A. Insulin-like growth factor I exerts growth hormone- and insulin-like actions on human muscle protein metabolism. Am J Physiol. 1994 Aug;267(2 Pt 1):E331–E336. doi: 10.1152/ajpendo.1994.267.2.E331. [DOI] [PubMed] [Google Scholar]
- Fryburg D. A., Louard R. J., Gerow K. E., Gelfand R. A., Barrett E. J. Growth hormone stimulates skeletal muscle protein synthesis and antagonizes insulin's antiproteolytic action in humans. Diabetes. 1992 Apr;41(4):424–429. doi: 10.2337/diab.41.4.424. [DOI] [PubMed] [Google Scholar]
- Förstermann U., Schmidt H. H., Pollock J. S., Sheng H., Mitchell J. A., Warner T. D., Nakane M., Murad F. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol. 1991 Oct 24;42(10):1849–1857. doi: 10.1016/0006-2952(91)90581-o. [DOI] [PubMed] [Google Scholar]
- Gelfand R. A., Barrett E. J. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest. 1987 Jul;80(1):1–6. doi: 10.1172/JCI113033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilliam M. B., Sherman M. P., Griscavage J. M., Ignarro L. J. A spectrophotometric assay for nitrate using NADPH oxidation by Aspergillus nitrate reductase. Anal Biochem. 1993 Aug 1;212(2):359–365. doi: 10.1006/abio.1993.1341. [DOI] [PubMed] [Google Scholar]
- Granger D. L., Hibbs J. B., Jr, Broadnax L. M. Urinary nitrate excretion in relation to murine macrophage activation. Influence of dietary L-arginine and oral NG-monomethyl-L-arginine. J Immunol. 1991 Feb 15;146(4):1294–1302. [PubMed] [Google Scholar]
- Green L. C., Ruiz de Luzuriaga K., Wagner D. A., Rand W., Istfan N., Young V. R., Tannenbaum S. R. Nitrate biosynthesis in man. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7764–7768. doi: 10.1073/pnas.78.12.7764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guarner C., Soriano G., Tomas A., Bulbena O., Novella M. T., Balanzo J., Vilardell F., Mourelle M., Moncada S. Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology. 1993 Nov;18(5):1139–1143. [PubMed] [Google Scholar]
- Haylor J., Singh I., el Nahas A. M. Nitric oxide synthesis inhibitor prevents vasodilation by insulin-like growth factor I. Kidney Int. 1991 Feb;39(2):333–335. doi: 10.1038/ki.1991.42. [DOI] [PubMed] [Google Scholar]
- Hirschberg R., Kopple J. D. Effects of growth hormone and IGF-I on renal function. Kidney Int Suppl. 1989 Nov;27:S20–S26. [PubMed] [Google Scholar]
- Hirschberg R., Kopple J. D. Evidence that insulin-like growth factor I increases renal plasma flow and glomerular filtration rate in fasted rats. J Clin Invest. 1989 Jan;83(1):326–330. doi: 10.1172/JCI113878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudlická O. Regulation of muscle blood flow. Clin Physiol. 1985 Jun;5(3):201–229. [PubMed] [Google Scholar]
- Ignarro L. J. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989 Jul;65(1):1–21. doi: 10.1161/01.res.65.1.1. [DOI] [PubMed] [Google Scholar]
- Jaffa A. A., LeRoith D., Roberts C. T., Jr, Rust P. F., Mayfield R. K. Insulin-like growth factor I produces renal hyperfiltration by a kinin-mediated mechanism. Am J Physiol. 1994 Jan;266(1 Pt 2):F102–F107. doi: 10.1152/ajprenal.1994.266.1.F102. [DOI] [PubMed] [Google Scholar]
- Johnstone M. T., Creager S. J., Scales K. M., Cusco J. A., Lee B. K., Creager M. A. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993 Dec;88(6):2510–2516. doi: 10.1161/01.cir.88.6.2510. [DOI] [PubMed] [Google Scholar]
- Jungersten L., Edlund A., Hafström L. O., Karlsson L., Petersson A. S., Wennmalm A. Plasma nitrate as an index of immune system activation in animals and man. J Clin Lab Immunol. 1993;40(1):1–4. [PubMed] [Google Scholar]
- Kharitonov S. A., Lubec G., Lubec B., Hjelm M., Barnes P. J. L-arginine increases exhaled nitric oxide in normal human subjects. Clin Sci (Lond) 1995 Feb;88(2):135–139. doi: 10.1042/cs0880135. [DOI] [PubMed] [Google Scholar]
- Kobzik L., Reid M. B., Bredt D. S., Stamler J. S. Nitric oxide in skeletal muscle. Nature. 1994 Dec 8;372(6506):546–548. doi: 10.1038/372546a0. [DOI] [PubMed] [Google Scholar]
- Laakso M., Edelman S. V., Brechtel G., Baron A. D. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990 Jun;85(6):1844–1852. doi: 10.1172/JCI114644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefroy D. C., Crake T., Uren N. G., Davies G. J., Maseri A. Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans. Circulation. 1993 Jul;88(1):43–54. doi: 10.1161/01.cir.88.1.43. [DOI] [PubMed] [Google Scholar]
- Louard R. J., Fryburg D. A., Gelfand R. A., Barrett E. J. Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle. J Clin Invest. 1992 Dec;90(6):2348–2354. doi: 10.1172/JCI116124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto A., Hirata Y., Momomura S., Fujita H., Yao A., Sata M., Serizawa T. Increased nitric oxide production during exercise. Lancet. 1994 Apr 2;343(8901):849–850. doi: 10.1016/s0140-6736(94)92047-8. [DOI] [PubMed] [Google Scholar]
- Mayhan W. G. Impairment of endothelium-dependent dilatation of cerebral arterioles during diabetes mellitus. Am J Physiol. 1989 Mar;256(3 Pt 2):H621–H625. doi: 10.1152/ajpheart.1989.256.3.H621. [DOI] [PubMed] [Google Scholar]
- McKie L. D., Bass B. L., Dunkin B. J., Harmon J. W. Nitric oxide mediates the blood flow response to intravenous adenosine in the rabbit. Circ Shock. 1994 Jul;43(3):103–106. [PubMed] [Google Scholar]
- McNulty P. H., Young L. H., Barrett E. J. Response of rat heart and skeletal muscle protein in vivo to insulin and amino acid infusion. Am J Physiol. 1993 Jun;264(6 Pt 1):E958–E965. doi: 10.1152/ajpendo.1993.264.6.E958. [DOI] [PubMed] [Google Scholar]
- McVeigh G. E., Brennan G. M., Johnston G. D., McDermott B. J., McGrath L. T., Henry W. R., Andrews J. W., Hayes J. R. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992 Aug;35(8):771–776. doi: 10.1007/BF00429099. [DOI] [PubMed] [Google Scholar]
- Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
- Nakane M., Schmidt H. H., Pollock J. S., Förstermann U., Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett. 1993 Jan 25;316(2):175–180. doi: 10.1016/0014-5793(93)81210-q. [DOI] [PubMed] [Google Scholar]
- Natali A., Buzzigoli G., Taddei S., Santoro D., Cerri M., Pedrinelli R., Ferrannini E. Effects of insulin on hemodynamics and metabolism in human forearm. Diabetes. 1990 Apr;39(4):490–500. doi: 10.2337/diab.39.4.490. [DOI] [PubMed] [Google Scholar]
- Ochoa J. B., Udekwu A. O., Billiar T. R., Curran R. D., Cerra F. B., Simmons R. L., Peitzman A. B. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg. 1991 Nov;214(5):621–626. doi: 10.1097/00000658-199111000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosselli M., Imthurm B., Macas E., Keller P. J., Dubey R. K. Circulating nitrite/nitrate levels increase with follicular development: indirect evidence for estradiol mediated NO release. Biochem Biophys Res Commun. 1994 Aug 15;202(3):1543–1552. doi: 10.1006/bbrc.1994.2107. [DOI] [PubMed] [Google Scholar]
- Rowe J. W., Young J. B., Minaker K. L., Stevens A. L., Pallotta J., Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes. 1981 Mar;30(3):219–225. doi: 10.2337/diab.30.3.219. [DOI] [PubMed] [Google Scholar]
- Scherrer U., Randin D., Vollenweider P., Vollenweider L., Nicod P. Nitric oxide release accounts for insulin's vascular effects in humans. J Clin Invest. 1994 Dec;94(6):2511–2515. doi: 10.1172/JCI117621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigdell J. E. Venous occlusion plethysmography. Part 1: basic principles and applications. Biomed Eng. 1975 Aug;10(8):300–302. [PubMed] [Google Scholar]
- Sun D., Huang A., Koller A., Kaley G. Short-term daily exercise activity enhances endothelial NO synthesis in skeletal muscle arterioles of rats. J Appl Physiol (1985) 1994 May;76(5):2241–2247. doi: 10.1152/jappl.1994.76.5.2241. [DOI] [PubMed] [Google Scholar]
- Tracey W. R., Tse J., Carter G. Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J Pharmacol Exp Ther. 1995 Mar;272(3):1011–1015. [PubMed] [Google Scholar]
- Trachtman H., Futterweit S., Singhal P. Nitric oxide modulates the synthesis of extracellular matrix proteins in cultured rat mesangial cells. Biochem Biophys Res Commun. 1995 Feb 6;207(1):120–125. doi: 10.1006/bbrc.1995.1161. [DOI] [PubMed] [Google Scholar]
- Tsukahara H., Gordienko D. V., Tonshoff B., Gelato M. C., Goligorsky M. S. Direct demonstration of insulin-like growth factor-I-induced nitric oxide production by endothelial cells. Kidney Int. 1994 Feb;45(2):598–604. doi: 10.1038/ki.1994.78. [DOI] [PubMed] [Google Scholar]
- Vallance P., Collier J., Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989 Oct 28;2(8670):997–1000. doi: 10.1016/s0140-6736(89)91013-1. [DOI] [PubMed] [Google Scholar]
- Vollenweider P., Tappy L., Randin D., Schneiter P., Jéquier E., Nicod P., Scherrer U. Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest. 1993 Jul;92(1):147–154. doi: 10.1172/JCI116542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winlaw D. S., Smythe G. A., Keogh A. M., Schyvens C. G., Spratt P. M., Macdonald P. S. Increased nitric oxide production in heart failure. Lancet. 1994 Aug 6;344(8919):373–374. doi: 10.1016/s0140-6736(94)91403-6. [DOI] [PubMed] [Google Scholar]
- Wong H. R., Carcillo J. A., Burckart G., Shah N., Janosky J. E. Increased serum nitrite and nitrate concentrations in children with the sepsis syndrome. Crit Care Med. 1995 May;23(5):835–842. doi: 10.1097/00003246-199505000-00010. [DOI] [PubMed] [Google Scholar]
- Yki-Järvinen H., Young A. A., Lamkin C., Foley J. E. Kinetics of glucose disposal in whole body and across the forearm in man. J Clin Invest. 1987 Jun;79(6):1713–1719. doi: 10.1172/JCI113011. [DOI] [PMC free article] [PubMed] [Google Scholar]