Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Mar 15;97(6):1389–1397. doi: 10.1172/JCI118559

Islet transplantation under the kidney capsule fully corrects the impaired skeletal muscle glucose transport system of streptozocin diabetic rats.

R Napoli 1, A M Davalli 1, M F Hirshman 1, R Weitgasser 1, G C Weir 1, E S Horton 1
PMCID: PMC507197  PMID: 8617870

Abstract

Chronic insulin therapy improves but does not restore impaired insulin-mediated muscle glucose uptake in human diabetes or muscle glucose uptake, transport, and transporter translocation in streptozocin diabetic rats. To determine whether this inability is due to inadequate insulin replacement, we studied fasted streptozocin-induced diabetic Lewis rats either untreated or after islet transplantation under the kidney capsule. Plasma glucose was increased in untreated diabetics and normalized by the islet transplantation (110 +/- 5, 452 +/- 9, and 102 +/- 3 mg/dl in controls, untreated diabetics, and transplanted diabetics, respectively). Plasma membrane and intracellular microsomal membrane vesicles were prepared from hindlimb skeletal muscle of basal and maximally insulin-stimulated rats. Islet transplantation normalized plasma membrane carrier-mediated glucose transport Vmax, plasma membrane glucose transporter content, and insulin-induced transporter translocation. There were no differences in transporter intrinsic activity (Vmax/Ro) among the three groups. Microsomal membrane GLUT4 content was reduced by 30% in untreated diabetic rats and normal in transplanted diabetics, whereas the insulin-induced changes in microsomal membrane GLUT4 content were quantitatively similar in the three groups. There were no differences in plasma membrane GLUT1 among the groups and between basal and insulin stimulated states. Microsomal membrane GLUT1 content was increased 60% in untreated diabetics and normalized by the transplantation. In conclusion, an adequate insulin delivery in the peripheral circulation, obtained by islet transplantation, fully restores the muscle glucose transport system to normal in streptozocin diabetic rats.

Full Text

The Full Text of this article is available as a PDF (212.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen P. H., Lund S., Vestergaard H., Junker S., Kahn B. B., Pedersen O. Expression of the major insulin regulatable glucose transporter (GLUT4) in skeletal muscle of noninsulin-dependent diabetic patients and healthy subjects before and after insulin infusion. J Clin Endocrinol Metab. 1993 Jul;77(1):27–32. doi: 10.1210/jcem.77.1.8325952. [DOI] [PubMed] [Google Scholar]
  2. Barnard R. J., Youngren J. F., Kartel D. S., Martin D. A. Effects of streptozotocin-induced diabetes on glucose transport in skeletal muscle. Endocrinology. 1990 Apr;126(4):1921–1926. doi: 10.1210/endo-126-4-1921. [DOI] [PubMed] [Google Scholar]
  3. Baron A. D., Laakso M., Brechtel G., Edelman S. V. Reduced capacity and affinity of skeletal muscle for insulin-mediated glucose uptake in noninsulin-dependent diabetic subjects. Effects of insulin therapy. J Clin Invest. 1991 Apr;87(4):1186–1194. doi: 10.1172/JCI115117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bers D. M. Isolation and characterization of cardiac sarcolemma. Biochim Biophys Acta. 1979 Jul 19;555(1):131–146. doi: 10.1016/0005-2736(79)90078-6. [DOI] [PubMed] [Google Scholar]
  5. Bers D. M., Philipson K. D., Nishimoto A. Y. Sodium-calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles. Biochim Biophys Acta. 1980 Sep 18;601(2):358–371. doi: 10.1016/0005-2736(80)90540-4. [DOI] [PubMed] [Google Scholar]
  6. Bonadonna R. C., Del Prato S., Saccomani M. P., Bonora E., Gulli G., Ferrannini E., Bier D., Cobelli C., DeFronzo R. A. Transmembrane glucose transport in skeletal muscle of patients with non-insulin-dependent diabetes. J Clin Invest. 1993 Jul;92(1):486–494. doi: 10.1172/JCI116592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Calderhead D. M., Kitagawa K., Lienhard G. E., Gould G. W. Translocation of the brain-type glucose transporter largely accounts for insulin stimulation of glucose transport in BC3H-1 myocytes. Biochem J. 1990 Aug 1;269(3):597–601. doi: 10.1042/bj2690597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Capaldo B., Napoli R., Di Marino L., Picardi A., Riccardi G., Sacca L. Quantitation of forearm glucose and free fatty acid (FFA) disposal in normal subjects and type II diabetic patients: evidence against an essential role for FFA in the pathogenesis of insulin resistance. J Clin Endocrinol Metab. 1988 Nov;67(5):893–898. doi: 10.1210/jcem-67-5-893. [DOI] [PubMed] [Google Scholar]
  10. Capaldo B., Napoli R., Di Marino L., Saccà L. Epinephrine directly antagonizes insulin-mediated activation of glucose uptake and inhibition of free fatty acid release in forearm tissues. Metabolism. 1992 Oct;41(10):1146–1149. doi: 10.1016/0026-0495(92)90301-p. [DOI] [PubMed] [Google Scholar]
  11. Clancy B. M., Czech M. P. Hexose transport stimulation and membrane redistribution of glucose transporter isoforms in response to cholera toxin, dibutyryl cyclic AMP, and insulin in 3T3-L1 adipocytes. J Biol Chem. 1990 Jul 25;265(21):12434–12443. [PubMed] [Google Scholar]
  12. Clancy B. M., Harrison S. A., Buxton J. M., Czech M. P. Protein synthesis inhibitors activate glucose transport without increasing plasma membrane glucose transporters in 3T3-L1 adipocytes. J Biol Chem. 1991 Jun 5;266(16):10122–10130. [PubMed] [Google Scholar]
  13. Davalli A. M., Ogawa Y., Scaglia L., Wu Y. J., Hollister J., Bonner-Weir S., Weir G. C. Function, mass, and replication of porcine and rat islets transplanted into diabetic nude mice. Diabetes. 1995 Jan;44(1):104–111. doi: 10.2337/diab.44.1.104. [DOI] [PubMed] [Google Scholar]
  14. DeFronzo R. A., Gunnarsson R., Björkman O., Olsson M., Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985 Jul;76(1):149–155. doi: 10.1172/JCI111938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. DeFronzo R. A., Hendler R., Simonson D. Insulin resistance is a prominent feature of insulin-dependent diabetes. Diabetes. 1982 Sep;31(9):795–801. doi: 10.2337/diab.31.9.795. [DOI] [PubMed] [Google Scholar]
  16. Del Prato S., Leonetti F., Simonson D. C., Sheehan P., Matsuda M., DeFronzo R. A. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia. 1994 Oct;37(10):1025–1035. doi: 10.1007/BF00400466. [DOI] [PubMed] [Google Scholar]
  17. Del Prato S., Nosadini R., Tiengo A., Tessari P., Avogaro A., Trevisan R., Valerio A., Muggeo M., Cobelli C., Toffolo G. Insulin-mediated glucose disposal in type I diabetes: evidence for insulin resistance. J Clin Endocrinol Metab. 1983 Nov;57(5):904–910. doi: 10.1210/jcem-57-5-904. [DOI] [PubMed] [Google Scholar]
  18. Dimitrakoudis D., Ramlal T., Rastogi S., Vranic M., Klip A. Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle. Biochem J. 1992 Jun 1;284(Pt 2):341–348. doi: 10.1042/bj2840341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Douen A. G., Ramlal T., Rastogi S., Bilan P. J., Cartee G. D., Vranic M., Holloszy J. O., Klip A. Exercise induces recruitment of the "insulin-responsive glucose transporter". Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle. J Biol Chem. 1990 Aug 15;265(23):13427–13430. [PubMed] [Google Scholar]
  20. Elahi D., McAloon-Dyke M., Clark B. A., Kahn B. B., Weinreb J. E., Minaker K. L., Wong G. A., Morse L. A., Brown R. S., Shapiro M. E. Sequential evaluation of islet cell responses to glucose in the transplanted pancreas in humans. Am J Surg. 1993 Jan;165(1):15–22. doi: 10.1016/s0002-9610(05)80398-8. [DOI] [PubMed] [Google Scholar]
  21. Fink R. I., Wallace P., Brechtel G., Olefsky J. M. Evidence that glucose transport is rate-limiting for in vivo glucose uptake. Metabolism. 1992 Aug;41(8):897–902. doi: 10.1016/0026-0495(92)90174-9. [DOI] [PubMed] [Google Scholar]
  22. Folli F., Saad M. J., Backer J. M., Kahn C. R. Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus. J Clin Invest. 1993 Oct;92(4):1787–1794. doi: 10.1172/JCI116768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Giorgino F., Chen J. H., Smith R. J. Changes in tyrosine phosphorylation of insulin receptors and a 170,000 molecular weight nonreceptor protein in vivo in skeletal muscle of streptozotocin-induced diabetic rats: effects of insulin and glucose. Endocrinology. 1992 Mar;130(3):1433–1444. doi: 10.1210/endo.130.3.1531627. [DOI] [PubMed] [Google Scholar]
  24. Goodyear L. J., Hirshman M. F., Valyou P. M., Horton E. S. Glucose transporter number, function, and subcellular distribution in rat skeletal muscle after exercise training. Diabetes. 1992 Sep;41(9):1091–1099. doi: 10.2337/diab.41.9.1091. [DOI] [PubMed] [Google Scholar]
  25. Guerre-Millo M., Lavau M., Horne J. S., Wardzala L. J. Proposed mechanism for increased insulin-mediated glucose transport in adipose cells from young, obese Zucker rats. Large intracellular pool of glucose transporters. J Biol Chem. 1985 Feb 25;260(4):2197–2201. [PubMed] [Google Scholar]
  26. Handberg A., Vaag A., Damsbo P., Beck-Nielsen H., Vinten J. Expression of insulin regulatable glucose transporters in skeletal muscle from type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1990 Oct;33(10):625–627. doi: 10.1007/BF00400207. [DOI] [PubMed] [Google Scholar]
  27. Harrison S. A., Buxton J. M., Clancy B. M., Czech M. P. Evidence that erythroid-type glucose transporter intrinsic activity is modulated by cadmium treatment of mouse 3T3-L1 cells. J Biol Chem. 1991 Oct 15;266(29):19438–19449. [PubMed] [Google Scholar]
  28. Harrison S. A., Buxton J. M., Czech M. P. Suppressed intrinsic catalytic activity of GLUT1 glucose transporters in insulin-sensitive 3T3-L1 adipocytes. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7839–7843. doi: 10.1073/pnas.88.17.7839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Haspel H. C., Rosenfeld M. G., Rosen O. M. Characterization of antisera to a synthetic carboxyl-terminal peptide of the glucose transporter protein. J Biol Chem. 1988 Jan 5;263(1):398–403. [PubMed] [Google Scholar]
  30. Hirshman M. F., Goodyear L. J., Wardzala L. J., Horton E. D., Horton E. S. Identification of an intracellular pool of glucose transporters from basal and insulin-stimulated rat skeletal muscle. J Biol Chem. 1990 Jan 15;265(2):987–991. [PubMed] [Google Scholar]
  31. Holman G. D., Cushman S. W. Subcellular localization and trafficking of the GLUT4 glucose transporter isoform in insulin-responsive cells. Bioessays. 1994 Oct;16(10):753–759. doi: 10.1002/bies.950161010. [DOI] [PubMed] [Google Scholar]
  32. Homan M., Nicholson C. P., Katz H., Perkins J., Haymond M., Jensen M., Butler P., Rizza R. Effects of chronic systemic insulin delivery on insulin action in dogs. Diabetologia. 1991 Oct;34(10):702–708. doi: 10.1007/BF00401514. [DOI] [PubMed] [Google Scholar]
  33. James D. E., Burleigh K. M., Kraegen E. W. In vivo glucose metabolism in individual tissues of the rat. Interaction between epinephrine and insulin. J Biol Chem. 1986 May 15;261(14):6366–6374. [PubMed] [Google Scholar]
  34. Junod A., Lambert A. E., Stauffacher W., Renold A. E. Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest. 1969 Nov;48(11):2129–2139. doi: 10.1172/JCI106180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kahn B. B., Cushman S. W. Mechanism for markedly hyperresponsive insulin-stimulated glucose transport activity in adipose cells from insulin-treated streptozotocin diabetic rats. Evidence for increased glucose transporter intrinsic activity. J Biol Chem. 1987 Apr 15;262(11):5118–5124. [PubMed] [Google Scholar]
  36. Kahn B. B. Facilitative glucose transporters: regulatory mechanisms and dysregulation in diabetes. J Clin Invest. 1992 May;89(5):1367–1374. doi: 10.1172/JCI115724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kahn B. B., Rosen A. S., Bak J. F., Andersen P. H., Damsbo P., Lund S., Pedersen O. Expression of GLUT1 and GLUT4 glucose transporters in skeletal muscle of humans with insulin-dependent diabetes mellitus: regulatory effects of metabolic factors. J Clin Endocrinol Metab. 1992 May;74(5):1101–1109. doi: 10.1210/jcem.74.5.1569156. [DOI] [PubMed] [Google Scholar]
  38. Kahn B. B., Rossetti L., Lodish H. F., Charron M. J. Decreased in vivo glucose uptake but normal expression of GLUT1 and GLUT4 in skeletal muscle of diabetic rats. J Clin Invest. 1991 Jun;87(6):2197–2206. doi: 10.1172/JCI115254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kahn B. B., Simpson I. A., Cushman S. W. Divergent mechanisms for the insulin resistant and hyperresponsive glucose transport in adipose cells from fasted and refed rats. Alterations in both glucose transporter number and intrinsic activity. J Clin Invest. 1988 Aug;82(2):691–699. doi: 10.1172/JCI113649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Katz A., Nyomba B. L., Bogardus C. No accumulation of glucose in human skeletal muscle during euglycemic hyperinsulinemia. Am J Physiol. 1988 Dec;255(6 Pt 1):E942–E945. doi: 10.1152/ajpendo.1988.255.6.E942. [DOI] [PubMed] [Google Scholar]
  41. King P. A., Hirshman M. F., Horton E. D., Horton E. S. Glucose transport in skeletal muscle membrane vesicles from control and exercised rats. Am J Physiol. 1989 Dec;257(6 Pt 1):C1128–C1134. doi: 10.1152/ajpcell.1989.257.6.C1128. [DOI] [PubMed] [Google Scholar]
  42. King P. A., Horton E. D., Hirshman M. F., Horton E. S. Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation. J Clin Invest. 1992 Oct;90(4):1568–1575. doi: 10.1172/JCI116025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Klip A., Marette A., Dimitrakoudis D., Ramlal T., Giacca A., Shi Z. Q., Vranic M. Effect of diabetes on glucoregulation. From glucose transporters to glucose metabolism in vivo. Diabetes Care. 1992 Nov;15(11):1747–1766. doi: 10.2337/diacare.15.11.1747. [DOI] [PubMed] [Google Scholar]
  44. Klip A., Ramlal T., Bilan P. J., Cartee G. D., Gulve E. A., Holloszy J. O. Recruitment of GLUT-4 glucose transporters by insulin in diabetic rat skeletal muscle. Biochem Biophys Res Commun. 1990 Oct 30;172(2):728–736. doi: 10.1016/0006-291x(90)90735-6. [DOI] [PubMed] [Google Scholar]
  45. Klip A., Ramlal T., Young D. A., Holloszy J. O. Insulin-induced translocation of glucose transporters in rat hindlimb muscles. FEBS Lett. 1987 Nov 16;224(1):224–230. doi: 10.1016/0014-5793(87)80452-0. [DOI] [PubMed] [Google Scholar]
  46. Kubo K., Foley J. E. Rate-limiting steps for insulin-mediated glucose uptake into perfused rat hindlimb. Am J Physiol. 1986 Jan;250(1 Pt 1):E100–E102. doi: 10.1152/ajpendo.1986.250.1.E100. [DOI] [PubMed] [Google Scholar]
  47. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  48. Lisato G., Cusin I., Tiengo A., Del Prato S., Jeanrenaud B. The contribution of hyperglycaemia and hypoinsulinaemia to the insulin resistance of streptozotocin-diabetic rats. Diabetologia. 1992 Apr;35(4):310–315. doi: 10.1007/BF00401197. [DOI] [PubMed] [Google Scholar]
  49. Lund S., Vestergaard H., Andersen P. H., Schmitz O., Gøtzsche L. B., Pedersen O. GLUT-4 content in plasma membrane of muscle from patients with non-insulin-dependent diabetes mellitus. Am J Physiol. 1993 Dec;265(6 Pt 1):E889–E897. doi: 10.1152/ajpendo.1993.265.6.E889. [DOI] [PubMed] [Google Scholar]
  50. Luzi L., Secchi A., Facchini F., Battezzati A., Staudacher C., Spotti D., Castoldi R., Ferrari G., Di Carlo V., Pozza G. Reduction of insulin resistance by combined kidney-pancreas transplantation in type 1 (insulin-dependent) diabetic patients. Diabetologia. 1990 Sep;33(9):549–556. doi: 10.1007/BF00404143. [DOI] [PubMed] [Google Scholar]
  51. Marangou A. G., Weber K. M., Boston R. C., Aitken P. M., Heggie J. C., Kirsner R. L., Best J. D., Alford F. P. Metabolic consequences of prolonged hyperinsulinemia in humans. Evidence for induction of insulin insensitivity. Diabetes. 1986 Dec;35(12):1383–1389. doi: 10.2337/diab.35.12.1383. [DOI] [PubMed] [Google Scholar]
  52. Mueckler M. The molecular biology of glucose transport: relevance to insulin resistance and non-insulin-dependent diabetes mellitus. J Diabetes Complications. 1993 Apr-Jun;7(2):130–141. doi: 10.1016/1056-8727(93)90038-z. [DOI] [PubMed] [Google Scholar]
  53. Napoli R., Hirshman M. F., Horton E. S. Mechanisms and time course of impaired skeletal muscle glucose transport activity in streptozocin diabetic rats. J Clin Invest. 1995 Jul;96(1):427–437. doi: 10.1172/JCI118053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Pedersen O., Bak J. F., Andersen P. H., Lund S., Moller D. E., Flier J. S., Kahn B. B. Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes. 1990 Jul;39(7):865–870. doi: 10.2337/diab.39.7.865. [DOI] [PubMed] [Google Scholar]
  55. Rizza R. A., Mandarino L. J., Genest J., Baker B. A., Gerich J. E. Production of insulin resistance by hyperinsulinaemia in man. Diabetologia. 1985 Feb;28(2):70–75. doi: 10.1007/BF00279918. [DOI] [PubMed] [Google Scholar]
  56. Satoh S., Nishimura H., Clark A. E., Kozka I. J., Vannucci S. J., Simpson I. A., Quon M. J., Cushman S. W., Holman G. D. Use of bismannose photolabel to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J Biol Chem. 1993 Aug 25;268(24):17820–17829. [PubMed] [Google Scholar]
  57. Simonson D. C., Tamborlane W. V., Sherwin R. S., Smith J. D., DeFronzo R. A. Improved insulin sensitivity in patients with type I diabetes mellitus after CSII. Diabetes. 1985 Aug;34 (Suppl 3):80–86. doi: 10.2337/diab.34.3.s80. [DOI] [PubMed] [Google Scholar]
  58. Slot J. W., Geuze H. J., Gigengack S., James D. E., Lienhard G. E. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7815–7819. doi: 10.1073/pnas.88.17.7815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Slot J. W., Geuze H. J., Gigengack S., Lienhard G. E., James D. E. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J Cell Biol. 1991 Apr;113(1):123–135. doi: 10.1083/jcb.113.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Veleminsky J., Burr I. M., Stauffacher W. Comparative study of early metabolic events resulting from the administration of the two diabetogenic agents alloxan and streptozotocin. Eur J Clin Invest. 1970 Aug;1(2):104–108. doi: 10.1111/j.1365-2362.1970.tb00605.x. [DOI] [PubMed] [Google Scholar]
  62. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Yang J., Holman G. D. Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells. J Biol Chem. 1993 Mar 5;268(7):4600–4603. [PubMed] [Google Scholar]
  64. Yki-Järvinen H., Koivisto V. A. Continuous subcutaneous insulin infusion therapy decreases insulin resistance in type 1 diabetes. J Clin Endocrinol Metab. 1984 Apr;58(4):659–666. doi: 10.1210/jcem-58-4-659. [DOI] [PubMed] [Google Scholar]
  65. Yki-Järvinen H., Koivisto V. A. Continuous subcutaneous insulin infusion therapy decreases insulin resistance in type 1 diabetes. J Clin Endocrinol Metab. 1984 Apr;58(4):659–666. doi: 10.1210/jcem-58-4-659. [DOI] [PubMed] [Google Scholar]
  66. Yki-Järvinen H., Sahlin K., Ren J. M., Koivisto V. A. Localization of rate-limiting defect for glucose disposal in skeletal muscle of insulin-resistant type I diabetic patients. Diabetes. 1990 Feb;39(2):157–167. doi: 10.2337/diab.39.2.157. [DOI] [PubMed] [Google Scholar]
  67. Yki-Järvinen H., Vuorinen-Markkola H., Koranyi L., Bourey R., Tordjman K., Mueckler M., Permutt A. M., Koivisto V. A. Defect in insulin action on expression of the muscle/adipose tissue glucose transporter gene in skeletal muscle of type 1 diabetic patients. J Clin Endocrinol Metab. 1992 Sep;75(3):795–799. doi: 10.1210/jcem.75.3.1517369. [DOI] [PubMed] [Google Scholar]
  68. Ziel F. H., Venkatesan N., Davidson M. B. Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and STZ-induced diabetic rats. Diabetes. 1988 Jul;37(7):885–890. doi: 10.2337/diab.37.7.885. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES