Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Mar 15;97(6):1454–1462. doi: 10.1172/JCI118567

Endothelin(B) receptor activates NHE-3 by a Ca2+-dependent pathway in OKP cells.

T S Chu 1, Y Peng 1, A Cano 1, M Yanagisawa 1, R J Alpern 1
PMCID: PMC507205  PMID: 8617878

Abstract

To examine the mechanisms by which endothelin (ET) regulates the Na/H antiporter isoform, NHE-3, OKP cells were stably transfected with ET(A) and ET(B) receptor cDNA. In cells overexpressing ET(B), but not ET(A) receptors, ET-1 increased Na/H antiporter activity (JNa/H). This effect was inhibited by a nonselective endothelin receptor blocker and by a selective ET(B) receptor blocker but was not inhibited by an ET(A) selective receptor blocker. In ET(B)-overexpressing cells, 10(-8) M ET-1 inhibited adenylyl cyclase, but protein kinase A inhibition and pertussis toxin pretreatment did not affect Na/H antiporter activation by ET-1. ET-1 caused a transient increase in cell [Ca2+], followed by a sustained increase. Increases in cell [Ca2+] were partially inhibited by pertussis toxin. ET-1-induced increases in J(Na/H) were 50% inhibited by clamping cell [Ca2+] low with BAPTA, and by KN62, a Ca-calmodulin kinase inhibitor. Inhibitors of protein kinase C, cyclooxygenase, lipoxygenase, and cytochrome P450 and cyclic GMP were without effect. In ET(A)-overexpressing cells, ET-1 increased cell [Ca2+] but did not increase JNa/H. In summary, binding of ET-1 to ET(B) receptors increases Na/H antiporter activity in OKP cells, an effect mediated in part by increases in cell [Ca2+] and Ca-calmodulin kinase. Increases in cell [Ca2+] are not sufficient for Na/H antiporter activation.

Full Text

The Full Text of this article is available as a PDF (364.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpern R. J. Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process. J Gen Physiol. 1985 Nov;86(5):613–636. doi: 10.1085/jgp.86.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amemiya M., Loffing J., Lötscher M., Kaissling B., Alpern R. J., Moe O. W. Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int. 1995 Oct;48(4):1206–1215. doi: 10.1038/ki.1995.404. [DOI] [PubMed] [Google Scholar]
  3. Amemiya M., Yamaji Y., Cano A., Moe O. W., Alpern R. J. Acid incubation increases NHE-3 mRNA abundance in OKP cells. Am J Physiol. 1995 Jul;269(1 Pt 1):C126–C133. doi: 10.1152/ajpcell.1995.269.1.C126. [DOI] [PubMed] [Google Scholar]
  4. Arai H., Hori S., Aramori I., Ohkubo H., Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990 Dec 20;348(6303):730–732. doi: 10.1038/348730a0. [DOI] [PubMed] [Google Scholar]
  5. Aramori I., Nakanishi S. Coupling of two endothelin receptor subtypes to differing signal transduction in transfected Chinese hamster ovary cells. J Biol Chem. 1992 Jun 25;267(18):12468–12474. [PubMed] [Google Scholar]
  6. Baynash A. G., Hosoda K., Giaid A., Richardson J. A., Emoto N., Hammer R. E., Yanagisawa M. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994 Dec 30;79(7):1277–1285. doi: 10.1016/0092-8674(94)90018-3. [DOI] [PubMed] [Google Scholar]
  7. Biemesderfer D., Pizzonia J., Abu-Alfa A., Exner M., Reilly R., Igarashi P., Aronson P. S. NHE3: a Na+/H+ exchanger isoform of renal brush border. Am J Physiol. 1993 Nov;265(5 Pt 2):F736–F742. doi: 10.1152/ajprenal.1993.265.5.F736. [DOI] [PubMed] [Google Scholar]
  8. Cano A., Miller R. T., Alpern R. J., Preisig P. A. Angiotensin II stimulation of Na-H antiporter activity is cAMP independent in OKP cells. Am J Physiol. 1994 Jun;266(6 Pt 1):C1603–C1608. doi: 10.1152/ajpcell.1994.266.6.C1603. [DOI] [PubMed] [Google Scholar]
  9. Cano A., Preisig P., Alpern R. J. Cyclic adenosine monophosphate acutely inhibits and chronically stimulates Na/H antiporter in OKP cells. J Clin Invest. 1993 Oct;92(4):1632–1638. doi: 10.1172/JCI116748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chatsudthipong V., Chan Y. L. Inhibitory effect of angiotensin II on renal tubular transport. Am J Physiol. 1991 Mar;260(3 Pt 2):F340–F346. doi: 10.1152/ajprenal.1991.260.3.F340. [DOI] [PubMed] [Google Scholar]
  11. Chen M., Todd-Turla K., Wang W. H., Cao X., Smart A., Brosius F. C., Killen P. D., Keiser J. A., Briggs J. P., Schnermann J. Endothelin-1 mRNA in glomerular and epithelial cells of kidney. Am J Physiol. 1993 Oct;265(4 Pt 2):F542–F550. doi: 10.1152/ajprenal.1993.265.4.F542. [DOI] [PubMed] [Google Scholar]
  12. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  13. Dawson V. L., Dawson T. M., London E. D., Bredt D. S., Snyder S. H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6368–6371. doi: 10.1073/pnas.88.14.6368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eiam-Ong S., Hilden S. A., King A. J., Johns C. A., Madias N. E. Endothelin-1 stimulates the Na+/H+ and Na+/HCO3- transporters in rabbit renal cortex. Kidney Int. 1992 Jul;42(1):18–24. doi: 10.1038/ki.1992.255. [DOI] [PubMed] [Google Scholar]
  15. Garcia N. H., Garvin J. L. Endothelin's biphasic effect on fluid absorption in the proximal straight tubule and its inhibitory cascade. J Clin Invest. 1994 Jun;93(6):2572–2577. doi: 10.1172/JCI117268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  17. Guntupalli J., DuBose T. D., Jr Effects of endothelin on rat renal proximal tubule Na(+)-Pi cotransport and Na+/H+ exchange. Am J Physiol. 1994 Apr;266(4 Pt 2):F658–F666. doi: 10.1152/ajprenal.1994.266.4.F658. [DOI] [PubMed] [Google Scholar]
  18. Hidaka H., Kobayashi R. Pharmacology of protein kinase inhibitors. Annu Rev Pharmacol Toxicol. 1992;32:377–397. doi: 10.1146/annurev.pa.32.040192.002113. [DOI] [PubMed] [Google Scholar]
  19. Hosoda K., Hammer R. E., Richardson J. A., Baynash A. G., Cheung J. C., Giaid A., Yanagisawa M. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994 Dec 30;79(7):1267–1276. doi: 10.1016/0092-8674(94)90017-5. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Liu F. Y., Cogan M. G. Effects of intracellular calcium on proximal bicarbonate absorption. Am J Physiol. 1990 Sep;259(3 Pt 2):F451–F457. doi: 10.1152/ajprenal.1990.259.3.F451. [DOI] [PubMed] [Google Scholar]
  22. Masaki T., Vane J. R., Vanhoutte P. M. International Union of Pharmacology nomenclature of endothelin receptors. Pharmacol Rev. 1994 Jun;46(2):137–142. [PubMed] [Google Scholar]
  23. Moe O. W., Miller R. T., Horie S., Cano A., Preisig P. A., Alpern R. J. Differential regulation of Na/H antiporter by acid in renal epithelial cells and fibroblasts. J Clin Invest. 1991 Nov;88(5):1703–1708. doi: 10.1172/JCI115487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sakurai T., Yanagisawa M., Takuwa Y., Miyazaki H., Kimura S., Goto K., Masaki T. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature. 1990 Dec 20;348(6303):732–735. doi: 10.1038/348732a0. [DOI] [PubMed] [Google Scholar]
  25. Simonson M. S. Endothelins: multifunctional renal peptides. Physiol Rev. 1993 Apr;73(2):375–411. doi: 10.1152/physrev.1993.73.2.375. [DOI] [PubMed] [Google Scholar]
  26. Simonson M. S., Wann S., Mené P., Dubyak G. R., Kester M., Nakazato Y., Sedor J. R., Dunn M. J. Endothelin stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J Clin Invest. 1989 Feb;83(2):708–712. doi: 10.1172/JCI113935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takai M., Umemura I., Yamasaki K., Watakabe T., Fujitani Y., Oda K., Urade Y., Inui T., Yamamura T., Okada T. A potent and specific agonist, Suc-[Glu9,Ala11,15]-endothelin-1(8-21), IRL 1620, for the ETB receptor. Biochem Biophys Res Commun. 1992 Apr 30;184(2):953–959. doi: 10.1016/0006-291x(92)90683-c. [DOI] [PubMed] [Google Scholar]
  28. Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. doi: 10.1128/mcb.8.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takemoto F., Uchida S., Ogata E., Kurokawa K. Endothelin-1 and endothelin-3 binding to rat nephrons. Am J Physiol. 1993 May;264(5 Pt 2):F827–F832. doi: 10.1152/ajprenal.1993.264.5.F827. [DOI] [PubMed] [Google Scholar]
  30. Terada Y., Tomita K., Nonoguchi H., Marumo F. Different localization of two types of endothelin receptor mRNA in microdissected rat nephron segments using reverse transcription and polymerase chain reaction assay. J Clin Invest. 1992 Jul;90(1):107–112. doi: 10.1172/JCI115822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Terada Y., Tomita K., Nonoguchi H., Yang T., Marumo F. Expression of endothelin-3 mRNA along rat nephron segments using polymerase chain reaction. Kidney Int. 1993 Dec;44(6):1273–1280. doi: 10.1038/ki.1993.379. [DOI] [PubMed] [Google Scholar]
  32. Tomita K., Nonoguchi H., Marumo F. Effects of endothelin on peptide-dependent cyclic adenosine monophosphate accumulation along the nephron segments of the rat. J Clin Invest. 1990 Jun;85(6):2014–2018. doi: 10.1172/JCI114667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tsukahara H., Ende H., Magazine H. I., Bahou W. F., Goligorsky M. S. Molecular and functional characterization of the non-isopeptide-selective ETB receptor in endothelial cells. Receptor coupling to nitric oxide synthase. J Biol Chem. 1994 Aug 26;269(34):21778–21785. [PubMed] [Google Scholar]
  34. Walter R., Helmle-Kolb C., Forgo J., Binswanger U., Murer H. Stimulation of Na+/H+ exchange activity by endothelin in opossum kidney cells. Pflugers Arch. 1995 May;430(1):137–144. doi: 10.1007/BF00373849. [DOI] [PubMed] [Google Scholar]
  35. Wang T., Chan Y. L. The role of phosphoinositide turnover in mediating the biphasic effect of angiotensin II on renal tubular transport. J Pharmacol Exp Ther. 1991 Jan;256(1):309–317. [PubMed] [Google Scholar]
  36. Weinman E. J., Dubinsky W. P., Fisher K., Steplock D., Dinh Q., Chang L., Shenolikar S. Regulation of reconstituted renal Na+/H+ exchanger by calcium-dependent protein kinases. J Membr Biol. 1988 Aug;103(3):237–244. doi: 10.1007/BF01993983. [DOI] [PubMed] [Google Scholar]
  37. Winkel G. K., Sardet C., Pouyssegur J., Ives H. E. Role of cytoplasmic domain of the Na+/H+ exchanger in hormonal activation. J Biol Chem. 1993 Feb 15;268(5):3396–3400. [PubMed] [Google Scholar]
  38. Xu X., Star R. A., Tortorici G., Muallem S. Depletion of intracellular Ca2+ stores activates nitric-oxide synthase to generate cGMP and regulate Ca2+ influx. J Biol Chem. 1994 Apr 29;269(17):12645–12653. [PubMed] [Google Scholar]
  39. Yamaji Y., Amemiya M., Cano A., Preisig P. A., Miller R. T., Moe O. W., Alpern R. J. Overexpression of csk inhibits acid-induced activation of NHE-3. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6274–6278. doi: 10.1073/pnas.92.14.6274. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES