Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Mar 15;97(6):1463–1470. doi: 10.1172/JCI118568

Peptone stimulates CCK-releasing peptide secretion by activating intestinal submucosal cholinergic neurons.

Y Li 1, C Owyang 1
PMCID: PMC507206  PMID: 8617879

Abstract

In this study we tested the hypothesis that peptone in the intestine stimulates the secretion of the CCK-releasing peptide (CCK-RP) which mediates CCK secretion, and examined the enteric neural circuitry responsible for CCK-RP secretion. We used a "donor-recipient" rat intestinal perfusion model to quantify the CCK-RP secreted in response to nutrient stimulation. Infusion of concentrated intestinal perfusate collected from donor rat perfused with 5% peptone caused a 62 +/- 10% increase in protein secretion and an elevation of plasma CCK levels to 6.9 +/- 1.8 pM in the recipient rat. The stimulatory effect of the intestinal washings was abolished when the donor rats were pretreated with atropine or hexamethonium but not with guanethidine or vagotomy. Mucosal application of lidocaine but not serosal application of benzalkonium chloride which ablates the myenteric neurons in the donor rats also abolished the stimulatory action of the intestinal washings. Furthermore, treatment of the donor rats with a 5HT3 antagonist and a substance P antagonist also prevented the secretion of CCK-RP. These observations suggest that peptone in the duodenum stimulates serotonin release which activates the sensory substance P neurons in the submucous plexus. Signals are then transmitted to cholinergic interneurons and to epithelial CCK-RP containing cells via cholinergic secretomotor neurons. This enteric neural circuitry which is responsible for the secretion of CCK-RP may in turn play an important role in the postprandial release of CCK.

Full Text

The Full Text of this article is available as a PDF (187.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez E. O., Banzán A. M. Histamine in dorsal and ventral hippocampus. II. Effects of H1 and H2 histamine antagonists on exploratory behavior in male rats. Physiol Behav. 1986;37(1):39–45. doi: 10.1016/0031-9384(86)90381-1. [DOI] [PubMed] [Google Scholar]
  2. Bornstein J. C., Furness J. B., Costa M. An electrophysiological comparison of substance P-immunoreactive neurons with other neurons in the guinea-pig submucous plexus. J Auton Nerv Syst. 1989 Mar;26(2):113–120. doi: 10.1016/0165-1838(89)90159-8. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cassuto J., Jodal M., Tuttle R., Lundgren O. On the role of intramural nerves in the pathogenesis of cholera toxin-induced intestinal secretion. Scand J Gastroenterol. 1981 Apr;16(3):377–384. doi: 10.3109/00365528109181984. [DOI] [PubMed] [Google Scholar]
  5. Cooke H. J. Neuroimmune signaling in regulation of intestinal ion transport. Am J Physiol. 1994 Feb;266(2 Pt 1):G167–G178. doi: 10.1152/ajpgi.1994.266.2.G167. [DOI] [PubMed] [Google Scholar]
  6. Costa M., Furness J. B., Cuello A. C., Verhofstad A. A., Steinbusch H. W., Elde R. P. Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their visualization and reactions to drug treatment. Neuroscience. 1982 Feb;7(2):351–363. doi: 10.1016/0306-4522(82)90272-x. [DOI] [PubMed] [Google Scholar]
  7. Fujiwara Y., Sato M., Otsuki S. Interaction of carbamazepine and other drugs with adenosine (A1 and A2) receptors. Psychopharmacology (Berl) 1986;90(3):332–335. doi: 10.1007/BF00179186. [DOI] [PubMed] [Google Scholar]
  8. Furness J. B., Bornstein J. C., Murphy R., Pompolo S. Roles of peptides in transmission in the enteric nervous system. Trends Neurosci. 1992 Feb;15(2):66–71. doi: 10.1016/0166-2236(92)90029-8. [DOI] [PubMed] [Google Scholar]
  9. Gesek F. A., Cragoe E. J., Jr, Strandhoy J. W. Synergistic alpha-1 and alpha-2 adrenergic stimulation of rat proximal nephron Na+/H+ exchange. J Pharmacol Exp Ther. 1989 Jun;249(3):694–700. [PubMed] [Google Scholar]
  10. Gillberg P. G., Gordh T., Jr, Hartvig P., Jansson I., Pettersson J., Post C. Characterization of the antinociception induced by intrathecally administered carbachol. Pharmacol Toxicol. 1989 Apr;64(4):340–343. doi: 10.1111/j.1600-0773.1989.tb00660.x. [DOI] [PubMed] [Google Scholar]
  11. Hara H., Narakino H., Kiriyama S. Enhancement of pancreatic secretion by dietary protein in rats with chronic diversion of bile-pancreatic juice from the proximal small intestine. Pancreas. 1994 Mar;9(2):275–279. doi: 10.1097/00006676-199403000-00021. [DOI] [PubMed] [Google Scholar]
  12. Iwai K., Fushiki T., Fukuoka S. Pancreatic enzyme secretion mediated by novel peptide: monitor peptide hypothesis. Pancreas. 1988;3(6):720–728. doi: 10.1097/00006676-198812000-00013. [DOI] [PubMed] [Google Scholar]
  13. Karlström L., Cassuto J., Jodal M., Lundgren O. The importance of the enteric nervous system for the bile-salt-induced secretion in the small intestine of the rat. Scand J Gastroenterol. 1983 Jan;18(1):117–123. doi: 10.3109/00365528309181570. [DOI] [PubMed] [Google Scholar]
  14. Kirchgessner A. L., Tamir H., Gershon M. D. Identification and stimulation by serotonin of intrinsic sensory neurons of the submucosal plexus of the guinea pig gut: activity-induced expression of Fos immunoreactivity. J Neurosci. 1992 Jan;12(1):235–248. doi: 10.1523/JNEUROSCI.12-01-00235.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leung F. W. Primary sensory nerves mediate in part the protective mesenteric hyperemia after intraduodenal acidification in rats. Gastroenterology. 1993 Dec;105(6):1737–1745. doi: 10.1016/0016-5085(93)91071-o. [DOI] [PubMed] [Google Scholar]
  16. Levan V. H., Green G. M. Effect of atropine on rat pancreatic secretory response to trypsin inhibitors and protein. Am J Physiol. 1986 Jul;251(1 Pt 1):G64–G69. doi: 10.1152/ajpgi.1986.251.1.G64. [DOI] [PubMed] [Google Scholar]
  17. Levan V. H., Liddle R. A., Green G. M. Jejunal bypass stimulation of pancreatic growth and cholecystokinin secretion in rats: importance of luminal nutrients. Gut. 1987;28 (Suppl):25–29. doi: 10.1136/gut.28.suppl.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lewis L. D., Williams J. A. Regulation of cholecystokinin secretion by food, hormones, and neural pathways in the rat. Am J Physiol. 1990 Apr;258(4 Pt 1):G512–G518. doi: 10.1152/ajpgi.1990.258.4.G512. [DOI] [PubMed] [Google Scholar]
  19. Li Y., Hao Y., Owyang C. Evidence for autoregulation of cholecystokinin secretion during diversion of bile pancreatic juice in rats. Gastroenterology. 1995 Jul;109(1):231–238. doi: 10.1016/0016-5085(95)90289-9. [DOI] [PubMed] [Google Scholar]
  20. Li Y., Owyang C. Endogenous cholecystokinin stimulates pancreatic enzyme secretion via vagal afferent pathway in rats. Gastroenterology. 1994 Aug;107(2):525–531. doi: 10.1016/0016-5085(94)90180-5. [DOI] [PubMed] [Google Scholar]
  21. Liddle R. A., Goldfine I. D., Williams J. A. Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology. 1984 Sep;87(3):542–549. [PubMed] [Google Scholar]
  22. Liddle R. A., Green G. M., Conrad C. K., Williams J. A. Proteins but not amino acids, carbohydrates, or fats stimulate cholecystokinin secretion in the rat. Am J Physiol. 1986 Aug;251(2 Pt 1):G243–G248. doi: 10.1152/ajpgi.1986.251.2.G243. [DOI] [PubMed] [Google Scholar]
  23. Louie D. S., May D., Miller P., Owyang C. Cholecystokinin mediates feedback regulation of pancreatic enzyme secretion in rats. Am J Physiol. 1986 Feb;250(2 Pt 1):G252–G259. doi: 10.1152/ajpgi.1986.250.2.G252. [DOI] [PubMed] [Google Scholar]
  24. Louie D. S., Williams J. A., Owyang C. Action of pancreatic polypeptide on rat pancreatic secretion: in vivo and in vitro. Am J Physiol. 1985 Oct;249(4 Pt 1):G489–G495. doi: 10.1152/ajpgi.1985.249.4.G489. [DOI] [PubMed] [Google Scholar]
  25. Lu L., Louie D., Owyang C. A cholecystokinin releasing peptide mediates feedback regulation of pancreatic secretion. Am J Physiol. 1989 Feb;256(2 Pt 1):G430–G435. doi: 10.1152/ajpgi.1989.256.2.G430. [DOI] [PubMed] [Google Scholar]
  26. Luck M. S., White J. C., Bass P. Gastrointestinal transit is not impaired by regional loss of myenteric neurons in rat jejunum. Am J Physiol. 1993 Oct;265(4 Pt 1):G654–G659. doi: 10.1152/ajpgi.1993.265.4.G654. [DOI] [PubMed] [Google Scholar]
  27. Lundgren O., Svanvik J., Jivegård L. Enteric nervous system. I. Physiology and pathophysiology of the intestinal tract. Dig Dis Sci. 1989 Feb;34(2):264–283. doi: 10.1007/BF01536062. [DOI] [PubMed] [Google Scholar]
  28. Mawe G. M., Branchek T. A., Gershon M. D. Blockade of 5-HT-mediated enteric slow EPSPs by BRL 24924: gastrokinetic effects. Am J Physiol. 1989 Sep;257(3 Pt 1):G386–G396. doi: 10.1152/ajpgi.1989.257.3.G386. [DOI] [PubMed] [Google Scholar]
  29. McLean S., Ganong A. H., Seeger T. F., Bryce D. K., Pratt K. G., Reynolds L. S., Siok C. J., Lowe J. A., 3rd, Heym J. Activity and distribution of binding sites in brain of a nonpeptide substance P (NK1) receptor antagonist. Science. 1991 Jan 25;251(4992):437–439. doi: 10.1126/science.1703324. [DOI] [PubMed] [Google Scholar]
  30. Meller S. T., Lewis S. J., Brody M. J., Gebhart G. F. The peripheral nociceptive actions of intravenously administered 5-HT in the rat requires dual activation of both 5-HT2 and 5-HT3 receptor subtypes. Brain Res. 1991 Oct 4;561(1):61–68. doi: 10.1016/0006-8993(91)90749-l. [DOI] [PubMed] [Google Scholar]
  31. Meller S. T., Lewis S. J., Brody M. J., Gebhart G. F. Vagal afferent-mediated inhibition of a nociceptive reflex by i.v. serotonin in the rat. II. Role of 5-HT receptor subtypes. Brain Res. 1992 Jul 10;585(1-2):71–86. doi: 10.1016/0006-8993(92)91192-h. [DOI] [PubMed] [Google Scholar]
  32. Miyasaka K., Guan D. F., Liddle R. A., Green G. M. Feedback regulation by trypsin: evidence for intraluminal CCK-releasing peptide. Am J Physiol. 1989 Aug;257(2 Pt 1):G175–G181. doi: 10.1152/ajpgi.1989.257.2.G175. [DOI] [PubMed] [Google Scholar]
  33. Moore F. D. Radiation burdens for humans on prolonged exomagnetospheric voyages. FASEB J. 1992 Mar;6(6):2338–2343. doi: 10.1096/fasebj.6.6.1544543. [DOI] [PubMed] [Google Scholar]
  34. Pothoulakis C., Castagliuolo I., LaMont J. T., Jaffer A., O'Keane J. C., Snider R. M., Leeman S. E. CP-96,345, a substance P antagonist, inhibits rat intestinal responses to Clostridium difficile toxin A but not cholera toxin. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):947–951. doi: 10.1073/pnas.91.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Read N. W., Gwee K. A. The importance of 5-hydroxytryptamine receptors in the gut. Pharmacol Ther. 1994 Apr-May;62(1-2):159–173. doi: 10.1016/0163-7258(94)90009-4. [DOI] [PubMed] [Google Scholar]
  36. Schneeman B. O., Lyman R. L. Factors involved in the intestinal feedback regulation of pancreatic enzyme secretion in the rat. Proc Soc Exp Biol Med. 1975 Mar;148(3):897–903. doi: 10.3181/00379727-148-38656. [DOI] [PubMed] [Google Scholar]
  37. See N. A., Greenwood B., Bass P. Submucosal plexus alone integrates motor activity and epithelial transport in rat jejunum. Am J Physiol. 1990 Oct;259(4 Pt 1):G593–G598. doi: 10.1152/ajpgi.1990.259.4.G593. [DOI] [PubMed] [Google Scholar]
  38. Sharara A. I., Bouras E. P., Misukonis M. A., Liddle R. A. Evidence for indirect dietary regulation of cholecystokinin release in rats. Am J Physiol. 1993 Jul;265(1 Pt 1):G107–G112. doi: 10.1152/ajpgi.1993.265.1.G107. [DOI] [PubMed] [Google Scholar]
  39. Singer M. V., Niebel W., Jansen J. B., Hoffmeister D., Gotthold S., Goebell H., Lamers C. B. Pancreatic secretory response to intravenous caerulein and intraduodenal tryptophan studies: before and after stepwise removal of the extrinsic nerves of the pancreas in dogs. Gastroenterology. 1989 Mar;96(3):925–934. [PubMed] [Google Scholar]
  40. Spannagel A. W., Green G. M. Role of intraluminal nutrients in feedback regulation of pancreatic enzyme secretion. Ann N Y Acad Sci. 1994 Mar 23;713:424–426. doi: 10.1111/j.1749-6632.1994.tb44115.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES