Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Apr 1;97(7):1589–1596. doi: 10.1172/JCI118583

Dog mastocytoma cells secrete a 92-kD gelatinase activated extracellularly by mast cell chymase.

K C Fang 1, W W Raymond 1, S C Lazarus 1, G H Caughey 1
PMCID: PMC507221  PMID: 8601622

Abstract

Gelatinolytic metalloproteinases implicated in connective tissue remodeling and tumor invasion are secreted from several types of cells in the form of inactive zymogens. In this report, characterization of gelatinase activity secreted by the BR line of dog mastocytoma cells reveals a phorbol-inducible, approximately 92-kD, Ca2+ - and Zn2+ -dependent proenzyme cleaved over time to smaller, active forms. Incubation of cells with the general serine protease inhibitor, PMSF, prevented proenzyme cleavage and permitted its purification free of activation products. The NH2-terminal 13 amino acids of the purified mastocytoma progelatinase are 50-67% identical to those of human, mouse, and rabbit 92-kD progelatinase (gelatinase B; matrix metalloproteinase-9). Degranulation of mastocytoma cells using ionophore A23187 greatly accelerated proenzyme cleavage, suggesting that a serine protease present in secretory granules hydrolyzed the progelatinase to active fragments. To identify the activating protease, cells were coincubated with ionophore and a panel of selective serine protease inhibitors. Soybean trypsin inhibitor and succinyl-L-Ala-Ala-Pro-Phe-chloromethylketone, which inhibit mast cell chymase, prevented progelatinase activation. Inhibitors of tryptase and dog mast cell protease (dMCP)-3, i.e., aprotinin or bis(5-amidino-2-benzimidazolyl) methane (BABIM), did not. In further experiments using highly purified enzymes, mastocytoma cell chymase activated 92-kD progelatinase in the absence of other enzymes or cofactors; tryptase and dMCP-3, however, had no effect. These data demonstrate that dog mastocytoma cells secrete a metalloproteinase related to progelatinase B that is directly activated outside of the cell by exocytosed chymase, and provide the first demonstration of a cell that activates a matrix metalloproteinase it secretes by cosecreting an activating enzyme. In mastocytomas, this pathway may facilitate tumor invasion of surrounding tissues, and in normal mast cells, it could play a role in tissue remodeling and repair.

Full Text

The Full Text of this article is available as a PDF (278.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkedal-Hansen H., Taylor R. E. Detergent-activation of latent collagenase and resolution of its component molecules. Biochem Biophys Res Commun. 1982 Aug 31;107(4):1173–1178. doi: 10.1016/s0006-291x(82)80120-4. [DOI] [PubMed] [Google Scholar]
  2. Caughey G. H., Raymond W. W., Bacci E., Lombardy R. J., Tidwell R. R. Bis(5-amidino-2-benzimidazolyl)methane and related amidines are potent, reversible inhibitors of mast cell tryptases. J Pharmacol Exp Ther. 1993 Feb;264(2):676–682. [PubMed] [Google Scholar]
  3. Caughey G. H., Viro N. F., Lazarus S. C., Nadel J. A. Purification and characterization of dog mastocytoma chymase: identification of an octapeptide conserved in chymotryptic leukocyte proteinases. Biochim Biophys Acta. 1988 Jan 29;952(2):142–149. doi: 10.1016/0167-4838(88)90109-4. [DOI] [PubMed] [Google Scholar]
  4. Caughey G. H., Viro N. F., Ramachandran J., Lazarus S. C., Borson D. B., Nadel J. A. Dog mastocytoma tryptase: affinity purification, characterization, and amino-terminal sequence. Arch Biochem Biophys. 1987 Nov 1;258(2):555–563. doi: 10.1016/0003-9861(87)90377-8. [DOI] [PubMed] [Google Scholar]
  5. Chanez P., Lacoste J. Y., Guillot B., Giron J., Barnéon G., Enander I., Godard P., Michel F. B., Bousquet J. Mast cells' contribution to the fibrosing alveolitis of the scleroderma lung. Am Rev Respir Dis. 1993 Jun;147(6 Pt 1):1497–1502. doi: 10.1164/ajrccm/147.6_Pt_1.1497. [DOI] [PubMed] [Google Scholar]
  6. Fini M. E., Bartlett J. D., Matsubara M., Rinehart W. B., Mody M. K., Girard M. T., Rainville M. The rabbit gene for 92-kDa matrix metalloproteinase. Role of AP1 and AP2 in cell type-specific transcription. J Biol Chem. 1994 Nov 18;269(46):28620–28628. [PubMed] [Google Scholar]
  7. Goldberg G. I., Marmer B. L., Grant G. A., Eisen A. Z., Wilhelm S., He C. S. Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8207–8211. doi: 10.1073/pnas.86.21.8207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gruber B. L., Marchese M. J., Suzuki K., Schwartz L. B., Okada Y., Nagase H., Ramamurthy N. S. Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J Clin Invest. 1989 Nov;84(5):1657–1662. doi: 10.1172/JCI114344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HE C. S., Wilhelm S. M., Pentland A. P., Marmer B. L., Grant G. A., Eisen A. Z., Goldberg G. I. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2632–2636. doi: 10.1073/pnas.86.8.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hibbs M. S., Hasty K. A., Seyer J. M., Kang A. H., Mainardi C. L. Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J Biol Chem. 1985 Feb 25;260(4):2493–2500. [PubMed] [Google Scholar]
  11. Huhtala P., Chow L. T., Tryggvason K. Structure of the human type IV collagenase gene. J Biol Chem. 1990 Jul 5;265(19):11077–11082. [PubMed] [Google Scholar]
  12. Huhtala P., Tuuttila A., Chow L. T., Lohi J., Keski-Oja J., Tryggvason K. Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92- and 72-kilodalton enzyme genes in HT-1080 cells. J Biol Chem. 1991 Sep 5;266(25):16485–16490. [PubMed] [Google Scholar]
  13. Kawanami O., Ferrans V. J., Fulmer J. D., Crystal R. G. Ultrastructure of pulmonary mast cells in patients with fibrotic lung disorders. Lab Invest. 1979 Jun;40(6):717–734. [PubMed] [Google Scholar]
  14. Kjeldsen L., Bainton D. F., Sengeløv H., Borregaard N. Structural and functional heterogeneity among peroxidase-negative granules in human neutrophils: identification of a distinct gelatinase-containing granule subset by combined immunocytochemistry and subcellular fractionation. Blood. 1993 Nov 15;82(10):3183–3191. [PubMed] [Google Scholar]
  15. Kjeldsen L., Johnsen A. H., Sengeløv H., Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993 May 15;268(14):10425–10432. [PubMed] [Google Scholar]
  16. Lees M., Taylor D. J., Woolley D. E. Mast cell proteinases activate precursor forms of collagenase and stromelysin, but not of gelatinases A and B. Eur J Biochem. 1994 Jul 1;223(1):171–177. doi: 10.1111/j.1432-1033.1994.tb18980.x. [DOI] [PubMed] [Google Scholar]
  17. Matrisian L. M. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 1990 Apr;6(4):121–125. doi: 10.1016/0168-9525(90)90126-q. [DOI] [PubMed] [Google Scholar]
  18. Mican J. M., Metcalfe D. D. Arthritis and mast cell activation. J Allergy Clin Immunol. 1990 Oct;86(4 Pt 2):677–683. doi: 10.1016/s0091-6749(05)80240-4. [DOI] [PubMed] [Google Scholar]
  19. Mookhtiar K. A., Mallya S. K., Van Wart H. E. Properties of radiolabeled type I, II, and III collagens related to their use as substrates in collagenase assays. Anal Biochem. 1986 Nov 1;158(2):322–333. doi: 10.1016/0003-2697(86)90557-9. [DOI] [PubMed] [Google Scholar]
  20. Ogata Y., Enghild J. J., Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem. 1992 Feb 25;267(6):3581–3584. [PubMed] [Google Scholar]
  21. Pei D., Weiss S. J. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature. 1995 May 18;375(6528):244–247. doi: 10.1038/375244a0. [DOI] [PubMed] [Google Scholar]
  22. Pesci A., Bertorelli G., Gabrielli M., Olivieri D. Mast cells in fibrotic lung disorders. Chest. 1993 Apr;103(4):989–996. doi: 10.1378/chest.103.4.989. [DOI] [PubMed] [Google Scholar]
  23. Raymond W. W., Tam E. K., Blount J. L., Caughey G. H. Purification and characterization of dog mast cell protease-3, an oligomeric relative of tryptases. J Biol Chem. 1995 Jun 2;270(22):13164–13170. doi: 10.1074/jbc.270.22.13164. [DOI] [PubMed] [Google Scholar]
  24. Rice A., Banda M. J. Neutrophil elastase processing of gelatinase A is mediated by extracellular matrix. Biochemistry. 1995 Jul 18;34(28):9249–9256. doi: 10.1021/bi00028a038. [DOI] [PubMed] [Google Scholar]
  25. Saarinen J., Kalkkinen N., Welgus H. G., Kovanen P. T. Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase. J Biol Chem. 1994 Jul 8;269(27):18134–18140. [PubMed] [Google Scholar]
  26. Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994 Jul 7;370(6484):61–65. doi: 10.1038/370061a0. [DOI] [PubMed] [Google Scholar]
  27. Senior R. M., Griffin G. L., Fliszar C. J., Shapiro S. D., Goldberg G. I., Welgus H. G. Human 92- and 72-kilodalton type IV collagenases are elastases. J Biol Chem. 1991 Apr 25;266(12):7870–7875. [PubMed] [Google Scholar]
  28. Shapiro S. D., Fliszar C. J., Broekelmann T. J., Mecham R. P., Senior R. M., Welgus H. G. Activation of the 92-kDa gelatinase by stromelysin and 4-aminophenylmercuric acetate. Differential processing and stabilization of the carboxyl-terminal domain by tissue inhibitor of metalloproteinases (TIMP). J Biol Chem. 1995 Mar 17;270(11):6351–6356. doi: 10.1074/jbc.270.11.6351. [DOI] [PubMed] [Google Scholar]
  29. Springman E. B., Angleton E. L., Birkedal-Hansen H., Van Wart H. E. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a "cysteine switch" mechanism for activation. Proc Natl Acad Sci U S A. 1990 Jan;87(1):364–368. doi: 10.1073/pnas.87.1.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stack M. S., Johnson D. A. Human mast cell tryptase activates single-chain urinary-type plasminogen activator (pro-urokinase). J Biol Chem. 1994 Apr 1;269(13):9416–9419. [PubMed] [Google Scholar]
  31. Stetler-Stevenson W. G., Krutzsch H. C., Liotta L. A. Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem. 1989 Oct 15;264(29):17374–17378. [PubMed] [Google Scholar]
  32. Suzuki K., Enghild J. J., Morodomi T., Salvesen G., Nagase H. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry. 1990 Nov 6;29(44):10261–10270. doi: 10.1021/bi00496a016. [DOI] [PubMed] [Google Scholar]
  33. Tanaka H., Hojo K., Yoshida H., Yoshioka T., Sugita K. Molecular cloning and expression of the mouse 105-kDa gelatinase cDNA. Biochem Biophys Res Commun. 1993 Feb 15;190(3):732–740. doi: 10.1006/bbrc.1993.1110. [DOI] [PubMed] [Google Scholar]
  34. Van Wart H. E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578–5582. doi: 10.1073/pnas.87.14.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weeks B. S., Schnaper H. W., Handy M., Holloway E., Kleinman H. K. Human T lymphocytes synthesize the 92 kDa type IV collagenase (gelatinase B). J Cell Physiol. 1993 Dec;157(3):644–649. doi: 10.1002/jcp.1041570326. [DOI] [PubMed] [Google Scholar]
  36. Welgus H. G., Campbell E. J., Cury J. D., Eisen A. Z., Senior R. M., Wilhelm S. M., Goldberg G. I. Neutral metalloproteinases produced by human mononuclear phagocytes. Enzyme profile, regulation, and expression during cellular development. J Clin Invest. 1990 Nov;86(5):1496–1502. doi: 10.1172/JCI114867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., Goldberg G. I. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed] [Google Scholar]
  38. Yang T. T., Hawkes S. P. Role of the 21-kDa protein TIMP-3 in oncogenic transformation of cultured chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10676–10680. doi: 10.1073/pnas.89.22.10676. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES