Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Apr 1;97(7):1647–1654. doi: 10.1172/JCI118591

Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells.

H Mashima 1, H Ohnishi 1, K Wakabayashi 1, T Mine 1, J Miyagawa 1, T Hanafusa 1, M Seno 1, H Yamada 1, I Kojima 1
PMCID: PMC507229  PMID: 8601630

Abstract

Rat pancreatic AR42J cells possess exocrine and neuroendocrine properties. Activin A induces morphological changes and converts them into neuron-like cells. In activin-treated cells, mRNA for pancreatic polypeptide (PP) but not that for either insulin or glucagon was detected by reverse transcription-PCR. About 25% of the cells were stained by anti-PP antibody. When AR42J cells were incubated with betacellulin, a small portion of the cells were stained positively with antiinsulin and anti-PP antibodies. The effect of betacellulin was dose dependent, being maximal at 2 nM. Approximately 4% of the cells became insulin positive at this concentration, and mRNAs for insulin and PP were detected. When AR42J cells were incubated with a combination of betacellulin and activin A, approximately 10% of the cells became insulin positive. Morphologically, the insulin-positive cells were composed of two types of cells: neuron-like and round-shaped cells. Immunoreactive PP was found in the latter type of cells. The mRNAs for insulin, PP, glucose transporter 2, and glucokinase, but not glucagon, were detected. Depolarizing concentration of potassium, tolbutamide, carbachol, and glucagon-like peptide-1 stimulated the release of immunoreactive insulin. These results indicate that betacellulin and activin A convert amylase-secreting AR42J cells into cells secreting insulin. AR42J cells provide a model system to study the formation of pancreatic endocrine cells.

Full Text

The Full Text of this article is available as a PDF (304.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpert S., Hanahan D., Teitelman G. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell. 1988 Apr 22;53(2):295–308. doi: 10.1016/0092-8674(88)90391-1. [DOI] [PubMed] [Google Scholar]
  2. Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Christophe J. Pancreatic tumoral cell line AR42J: an amphicrine model. Am J Physiol. 1994 Jun;266(6 Pt 1):G963–G971. doi: 10.1152/ajpgi.1994.266.6.G963. [DOI] [PubMed] [Google Scholar]
  5. Furukawa M., Eto Y., Kojima I. Expression of immunoreactive activin A in fetal rat pancreas. Endocr J. 1995 Feb;42(1):63–68. doi: 10.1507/endocrj.42.63. [DOI] [PubMed] [Google Scholar]
  6. Gittes G. K., Rutter W. J. Onset of cell-specific gene expression in the developing mouse pancreas. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1128–1132. doi: 10.1073/pnas.89.3.1128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  8. Gu D., Lee M. S., Krahl T., Sarvetnick N. Transitional cells in the regenerating pancreas. Development. 1994 Jul;120(7):1873–1881. doi: 10.1242/dev.120.7.1873. [DOI] [PubMed] [Google Scholar]
  9. Herrera P. L., Huarte J., Sanvito F., Meda P., Orci L., Vassalli J. D. Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development. 1991 Dec;113(4):1257–1265. doi: 10.1242/dev.113.4.1257. [DOI] [PubMed] [Google Scholar]
  10. Herrera P. L., Huarte J., Zufferey R., Nichols A., Mermillod B., Philippe J., Muniesa P., Sanvito F., Orci L., Vassalli J. D. Ablation of islet endocrine cells by targeted expression of hormone-promoter-driven toxigenes. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12999–13003. doi: 10.1073/pnas.91.26.12999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iwashima Y., Kondoh-Abiko A., Seino S., Takeda J., Eto M., Polonsky K. S., Makino I. Reduced levels of messenger ribonucleic acid for calcium channel, glucose transporter-2, and glucokinase are associated with alterations in insulin secretion in fasted rats. Endocrinology. 1994 Sep;135(3):1010–1017. doi: 10.1210/endo.135.3.8070343. [DOI] [PubMed] [Google Scholar]
  12. Kanzaki M., Shibata H., Mogami H., Kojima I. Expression of calcium-permeable cation channel CD20 accelerates progression through the G1 phase in Balb/c 3T3 cells. J Biol Chem. 1995 Jun 2;270(22):13099–13104. doi: 10.1074/jbc.270.22.13099. [DOI] [PubMed] [Google Scholar]
  13. Le Douarin N. M. On the origin of pancreatic endocrine cells. Cell. 1988 Apr 22;53(2):169–171. doi: 10.1016/0092-8674(88)90375-3. [DOI] [PubMed] [Google Scholar]
  14. Logsdon C. D., Moessner J., Williams J. A., Goldfine I. D. Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells. J Cell Biol. 1985 Apr;100(4):1200–1208. doi: 10.1083/jcb.100.4.1200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McNeil P. L., McKenna M. P., Taylor D. L. A transient rise in cytosolic calcium follows stimulation of quiescent cells with growth factors and is inhibitable with phorbol myristate acetate. J Cell Biol. 1985 Aug;101(2):372–379. doi: 10.1083/jcb.101.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miyazaki J., Araki K., Yamato E., Ikegami H., Asano T., Shibasaki Y., Oka Y., Yamamura K. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 1990 Jul;127(1):126–132. doi: 10.1210/endo-127-1-126. [DOI] [PubMed] [Google Scholar]
  17. Murata M., Onomichi K., Eto Y., Shibai H., Muramatsu M. Expression of erythroid differentiation factor (EDF) in Chinese hamster ovary cells. Biochem Biophys Res Commun. 1988 Feb 29;151(1):230–235. doi: 10.1016/0006-291x(88)90583-9. [DOI] [PubMed] [Google Scholar]
  18. Ogawa K., Ono K., Kurohmaru M., Hayashi Y. Effect of streptozotocin injection on expression of immunoreactive follistatin and beta A and beta B subunits of inhibin/activin in rat pancreatic islets. Eur J Endocrinol. 1995 Mar;132(3):363–369. doi: 10.1530/eje.0.1320363. [DOI] [PubMed] [Google Scholar]
  19. Ohnishi H., Ohgushi N., Tanaka S., Mogami H., Nobusawa R., Mashima H., Furukawa M., Mine T., Shimada O., Ishikawa H. Conversion of amylase-secreting rat pancreatic AR42J cells to neuronlike cells by activin A. J Clin Invest. 1995 May;95(5):2304–2314. doi: 10.1172/JCI117922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pictet R. L., Clark W. R., Williams R. H., Rutter W. J. An ultrastructural analysis of the developing embryonic pancreas. Dev Biol. 1972 Dec;29(4):436–467. doi: 10.1016/0012-1606(72)90083-8. [DOI] [PubMed] [Google Scholar]
  21. Rall L. B., Pictet R. L., Williams R. H., Rutter W. J. Early differentiation of glucagon-producing cells in embryonic pancreas: a possible developmental role for glucagon. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3478–3482. doi: 10.1073/pnas.70.12.3478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ritvos O., Tuuri T., Erämaa M., Sainio K., Hildén K., Saxén L., Gilbert S. F. Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev. 1995 Apr;50(2-3):229–245. doi: 10.1016/0925-4773(94)00342-k. [DOI] [PubMed] [Google Scholar]
  23. Shing Y., Christofori G., Hanahan D., Ono Y., Sasada R., Igarashi K., Folkman J. Betacellulin: a mitogen from pancreatic beta cell tumors. Science. 1993 Mar 12;259(5101):1604–1607. doi: 10.1126/science.8456283. [DOI] [PubMed] [Google Scholar]
  24. Teitelman G., Alpert S., Polak J. M., Martinez A., Hanahan D. Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development. 1993 Aug;118(4):1031–1039. doi: 10.1242/dev.118.4.1031. [DOI] [PubMed] [Google Scholar]
  25. Teitelman G. Cellular and molecular analysis of pancreatic islet cell lineage and differentiation. Recent Prog Horm Res. 1991;47:259–297. doi: 10.1016/b978-0-12-571147-0.50012-3. [DOI] [PubMed] [Google Scholar]
  26. Teitelman G. Insulin cells of pancreas extend neurites but do not arise from the neuroectoderm. Dev Biol. 1990 Dec;142(2):368–379. doi: 10.1016/0012-1606(90)90357-o. [DOI] [PubMed] [Google Scholar]
  27. Teitelman G., Lee J. K. Cell lineage analysis of pancreatic islet development: glucagon and insulin cells arise from catecholaminergic precursors present in the pancreatic duct. Dev Biol. 1987 Jun;121(2):454–466. doi: 10.1016/0012-1606(87)90182-5. [DOI] [PubMed] [Google Scholar]
  28. Upchurch B. H., Aponte G. W., Leiter A. B. Expression of peptide YY in all four islet cell types in the developing mouse pancreas suggests a common peptide YY-producing progenitor. Development. 1994 Feb;120(2):245–252. doi: 10.1242/dev.120.2.245. [DOI] [PubMed] [Google Scholar]
  29. Vale W., Rivier J., Vaughan J., McClintock R., Corrigan A., Woo W., Karr D., Spiess J. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature. 1986 Jun 19;321(6072):776–779. doi: 10.1038/321776a0. [DOI] [PubMed] [Google Scholar]
  30. Wang T. C., Bonner-Weir S., Oates P. S., Chulak M., Simon B., Merlino G. T., Schmidt E. V., Brand S. J. Pancreatic gastrin stimulates islet differentiation of transforming growth factor alpha-induced ductular precursor cells. J Clin Invest. 1993 Sep;92(3):1349–1356. doi: 10.1172/JCI116708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Watanabe T., Shintani A., Nakata M., Shing Y., Folkman J., Igarashi K., Sasada R. Recombinant human betacellulin. Molecular structure, biological activities, and receptor interaction. J Biol Chem. 1994 Apr 1;269(13):9966–9973. [PubMed] [Google Scholar]
  32. Wiedenmann B., Franke W. W., Kuhn C., Moll R., Gould V. E. Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci U S A. 1986 May;83(10):3500–3504. doi: 10.1073/pnas.83.10.3500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yasuda H., Inoue K., Shibata H., Takeuchi T., Eto Y., Hasegawa Y., Sekine N., Totsuka Y., Mine T., Ogata E. Existence of activin-A in A- and D-cells of rat pancreatic islet. Endocrinology. 1993 Aug;133(2):624–630. doi: 10.1210/endo.133.2.8344202. [DOI] [PubMed] [Google Scholar]
  34. Yasuda H., Tanaka S., Ohnishi H., Mashima H., Ogushi N., Mine T., Kojima I. Activin A: negative regulator of amylase secretion and cell proliferation in rat pancreatic acinar AR42J cells. Am J Physiol. 1994 Aug;267(2 Pt 1):G220–G226. doi: 10.1152/ajpgi.1994.267.2.G220. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES