Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Apr 1;97(7):1696–1704. doi: 10.1172/JCI118596

Pancreatic carboxyl ester lipase: a circulating enzyme that modifies normal and oxidized lipoproteins in vitro.

R Shamir 1, W J Johnson 1, K Morlock-Fitzpatrick 1, R Zolfaghari 1, L Li 1, E Mas 1, D Lombardo 1, D W Morel 1, E A Fisher 1
PMCID: PMC507234  PMID: 8601635

Abstract

Pancreatic carboxyl ester lipase (CEL) hydrolyzes cholesteryl esters (CE), triglycerides (TG), and lysophospholipids, with CE and TG hydrolysis stimulated by cholate. Originally thought to be confined to the gastrointestinal system, CEL has been reported in the plasma of humans and other mammals, implying its potential in vivo to modify lipids associated with LDL, HDL (CE, TG), and oxidized LDL (lysophosphatidylcholine, lysoPC). We measured the concentration of CEL in human plasma as 1.2+/-0.5 ng/ml (in the range reported for lipoprotein lipase). Human LDL and HDL3 reconstituted with radiolabeled lipids were incubated with purified porcine CEL without or with cholate (10 or 100 microM, concentrations achievable in systemic or portal plasma, respectively). Using a saturating concentration of lipoprotein-associated CE (4 microM), with increasing cholate concentration there was an increase in the hydrolysis of LDL- and HDL3-CE; at 100 microM cholate, the present hydrolysis per hour was 32+/-2 and 1.6+/-0.1, respectively, indicating that CEL interaction varied with lipoprotein class. HDL3-TG hydrolysis was also observed, but was only approximately 5-10% of that for HDL3-CE at either 10 or 100 microM cholate. Oxidized LDL (OxLDL) is enriched with lysoPC, a proatherogenic compound. After a 4-h incubation with CEL, the lysoPC content of OxLDL was depleted 57%. Colocalization of CEL in the vicinity of OxLDL formation was supported by demonstrating in human aortic homogenate a cholate-stimulated cholesteryl ester hydrolytic activity inhibited by anti-human CEL IgG. We conclude that CEL has the capability to modify normal human LDL and HDL composition and structure and to reduce the atherogenicity of OxLDL by decreasing its lysoPC content.

Full Text

The Full Text of this article is available as a PDF (195.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abouakil N., Rogalska E., Bonicel J., Lombardo D. Purification of pancreatic carboxylic-ester hydrolase by immunoaffinity and its application to the human bile-salt-stimulated lipase. Biochim Biophys Acta. 1988 Aug 12;961(3):299–308. doi: 10.1016/0005-2760(88)90077-x. [DOI] [PubMed] [Google Scholar]
  2. Angelin B., Björkhem I., Einarsson K., Ewerth S. Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. J Clin Invest. 1982 Oct;70(4):724–731. doi: 10.1172/JCI110668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aviram M., Bierman E. L., Chait A. Modification of low density lipoprotein by lipoprotein lipase or hepatic lipase induces enhanced uptake and cholesterol accumulation in cells. J Biol Chem. 1988 Oct 25;263(30):15416–15422. [PubMed] [Google Scholar]
  4. Aviram M., Keidar S., Rosenblat M., Brook G. J. Reduced uptake of cholesterol esterase-modified low density lipoprotein by macrophages. J Biol Chem. 1991 Jun 25;266(18):11567–11574. [PubMed] [Google Scholar]
  5. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  6. Baba T., Downs D., Jackson K. W., Tang J., Wang C. S. Structure of human milk bile salt activated lipase. Biochemistry. 1991 Jan 15;30(2):500–510. doi: 10.1021/bi00216a028. [DOI] [PubMed] [Google Scholar]
  7. Bamberger M., Lund-Katz S., Phillips M. C., Rothblat G. H. Mechanism of the hepatic lipase induced accumulation of high-density lipoprotein cholesterol by cells in culture. Biochemistry. 1985 Jul 2;24(14):3693–3701. doi: 10.1021/bi00335a044. [DOI] [PubMed] [Google Scholar]
  8. Blaner W. S., Prystowsky J. H., Smith J. E., Goodman D. S. Rat liver retinyl palmitate hydrolase activity. Relationship to cholesteryl oleate and triolein hydrolase activities. Biochim Biophys Acta. 1984 Jul 26;794(3):419–427. doi: 10.1016/0005-2760(84)90008-0. [DOI] [PubMed] [Google Scholar]
  9. Bosner M. S., Gulick T., Riley D. J., Spilburg C. A., Lange L. G., 3rd Receptor-like function of heparin in the binding and uptake of neutral lipids. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7438–7442. doi: 10.1073/pnas.85.20.7438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Campbell C. B., McGuffie C., Powell L. W. The measurement of sulphated and non-sulphated bile acids in serum using gas-liquid chromatography. Clin Chim Acta. 1975 Sep 16;63(3):249–262. doi: 10.1016/0009-8981(75)90045-5. [DOI] [PubMed] [Google Scholar]
  11. Camulli E. D., Linke M. J., Brockman H. L., Hui D. Y. Identity of a cytosolic neutral cholesterol esterase in rat liver with the bile salt stimulated cholesterol esterase in pancreas. Biochim Biophys Acta. 1989 Sep 25;1005(2):177–182. doi: 10.1016/0005-2760(89)90184-7. [DOI] [PubMed] [Google Scholar]
  12. Chao F. F., Blanchette-Mackie E. J., Tertov V. V., Skarlatos S. I., Chen Y. J., Kruth H. S. Hydrolysis of cholesteryl ester in low density lipoprotein converts this lipoprotein to a liposome. J Biol Chem. 1992 Mar 5;267(7):4992–4998. [PubMed] [Google Scholar]
  13. Chen L., Morin R. Purification of a human placental cholesteryl ester hydrolase. Biochim Biophys Acta. 1971 Feb 2;231(1):194–197. doi: 10.1016/0005-2760(71)90268-2. [DOI] [PubMed] [Google Scholar]
  14. Duan R. D., Borgström B. Is there a specific lysophospholipase in human pancreatic juice? Biochim Biophys Acta. 1993 Apr 23;1167(3):326–330. doi: 10.1016/0005-2760(93)90236-3. [DOI] [PubMed] [Google Scholar]
  15. Eisenberg S., Sehayek E., Olivecrona T., Vlodavsky I. Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix. J Clin Invest. 1992 Nov;90(5):2013–2021. doi: 10.1172/JCI116081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldberg I. J., Blaner W. S., Goodman D. S. Immunologic and enzymatic comparisons between human and bovine lipoprotein lipase. Arch Biochem Biophys. 1986 Feb 1;244(2):580–584. doi: 10.1016/0003-9861(86)90626-0. [DOI] [PubMed] [Google Scholar]
  17. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hajjar D. P., Minick C. R., Fowler S. Arterial neutral cholesteryl esterase. A hormone-sensitive enzyme distinct from lysosomal cholesteryl esterase. J Biol Chem. 1983 Jan 10;258(1):192–198. [PubMed] [Google Scholar]
  19. Han J. H., Stratowa C., Rutter W. J. Isolation of full-length putative rat lysophospholipase cDNA using improved methods for mRNA isolation and cDNA cloning. Biochemistry. 1987 Mar 24;26(6):1617–1625. doi: 10.1021/bi00380a020. [DOI] [PubMed] [Google Scholar]
  20. Harrison E. H. Bile salt-dependent, neutral cholesteryl ester hydrolase of rat liver: possible relationship with pancreatic cholesteryl ester hydrolase. Biochim Biophys Acta. 1988 Nov 4;963(1):28–34. doi: 10.1016/0005-2760(88)90334-7. [DOI] [PubMed] [Google Scholar]
  21. Hatch F. T. Practical methods for plasma lipoprotein analysis. Adv Lipid Res. 1968;6:1–68. [PubMed] [Google Scholar]
  22. Holtsberg F. W., Ozgur L. E., Garsetti D. E., Myers J., Egan R. W., Clark M. A. Presence in human eosinophils of a lysophospholipase similar to that found in the pancreas. Biochem J. 1995 Jul 1;309(Pt 1):141–144. doi: 10.1042/bj3090141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Holvoet P., Collen D. Oxidized lipoproteins in atherosclerosis and thrombosis. FASEB J. 1994 Dec;8(15):1279–1284. doi: 10.1096/fasebj.8.15.8001740. [DOI] [PubMed] [Google Scholar]
  24. Jacobson P. W., Wiesenfeld P. W., Gallo L. L., Tate R. L., Osborne J. C., Jr Sodium cholate-induced changes in the conformation and activity of rat pancreatic cholesterol esterase. J Biol Chem. 1990 Jan 5;265(1):515–521. [PubMed] [Google Scholar]
  25. Johnson W. J., Chacko G. K., Phillips M. C., Rothblat G. H. The efflux of lysosomal cholesterol from cells. J Biol Chem. 1990 Apr 5;265(10):5546–5553. [PubMed] [Google Scholar]
  26. Kern P. A., Martin R. A., Carty J., Goldberg I. J., Ong J. M. Identification of lipoprotein lipase immunoreactive protein in pre- and postheparin plasma from normal subjects and patients with type I hyperlipoproteinemia. J Lipid Res. 1990 Jan;31(1):17–26. [PubMed] [Google Scholar]
  27. Kothari H. V., Miller B. F., Kritchevsky D. Aortic cholesterol esterase: characteristics of normal rat and rabbit enzyme. Biochim Biophys Acta. 1973 Feb 14;296(2):446–454. doi: 10.1016/0005-2760(73)90102-1. [DOI] [PubMed] [Google Scholar]
  28. Kothari H. V. Purification and properties of aortic cholesteryl ester hydrolase. Lipids. 1975 Jun;10(6):322–330. doi: 10.1007/BF02532453. [DOI] [PubMed] [Google Scholar]
  29. Krieger M., Brown M. S., Faust J. R., Goldstein J. L. Replacement of endogenous cholesteryl esters of low density lipoprotein with exogenous cholesteryl linoleate. Reconstitution of a biologically active lipoprotein particle. J Biol Chem. 1978 Jun 25;253(12):4093–4101. [PubMed] [Google Scholar]
  30. Kugiyama K., Kerns S. A., Morrisett J. D., Roberts R., Henry P. D. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990 Mar 8;344(6262):160–162. doi: 10.1038/344160a0. [DOI] [PubMed] [Google Scholar]
  31. Labeque R., Mullon C. J., Ferreira J. P., Lees R. S., Langer R. Enzymatic modification of plasma low density lipoproteins in rabbits: a potential treatment for hypercholesterolemia. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3476–3480. doi: 10.1073/pnas.90.8.3476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lombardo D., Montalto G., Roudani S., Mas E., Laugier R., Sbarra V., Abouakil N. Is bile salt-dependent lipase concentration in serum of any help in pancreatic cancer diagnosis? Pancreas. 1993 Sep;8(5):581–588. doi: 10.1097/00006676-199309000-00009. [DOI] [PubMed] [Google Scholar]
  33. Mangin E. L., Jr, Kugiyama K., Nguy J. H., Kerns S. A., Henry P. D. Effects of lysolipids and oxidatively modified low density lipoprotein on endothelium-dependent relaxation of rabbit aorta. Circ Res. 1993 Jan;72(1):161–166. doi: 10.1161/01.res.72.1.161. [DOI] [PubMed] [Google Scholar]
  34. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  35. Mas E., Abouakil N., Roudani S., Franc J. L., Montreuil J., Lombardo D. Variation of the glycosylation of human pancreatic bile-salt-dependent lipase. Eur J Biochem. 1993 Sep 15;216(3):807–812. doi: 10.1111/j.1432-1033.1993.tb18201.x. [DOI] [PubMed] [Google Scholar]
  36. Morel D. W., Hessler J. R., Chisolm G. M. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res. 1983 Aug;24(8):1070–1076. [PubMed] [Google Scholar]
  37. Parthasarathy S., Khoo J. C., Miller E., Barnett J., Witztum J. L., Steinberg D. Low density lipoprotein rich in oleic acid is protected against oxidative modification: implications for dietary prevention of atherosclerosis. Proc Natl Acad Sci U S A. 1990 May;87(10):3894–3898. doi: 10.1073/pnas.87.10.3894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Quinn M. T., Parthasarathy S., Steinberg D. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2805–2809. doi: 10.1073/pnas.85.8.2805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rea T. J., DeMattos R. B., Pape M. E. Hepatic expression of genes regulating lipid metabolism in rabbits. J Lipid Res. 1993 Nov;34(11):1901–1910. [PubMed] [Google Scholar]
  40. Rudd E. A., Mizuno N. K., Brockman H. L. Isolation of two forms of carboxylester lipase (cholesterol esterase) from porcine pancreas. Biochim Biophys Acta. 1987 Apr 3;918(2):106–114. doi: 10.1016/0005-2760(87)90184-6. [DOI] [PubMed] [Google Scholar]
  41. Rumsey S. C., Obunike J. C., Arad Y., Deckelbaum R. J., Goldberg I. J. Lipoprotein lipase-mediated uptake and degradation of low density lipoproteins by fibroblasts and macrophages. J Clin Invest. 1992 Oct;90(4):1504–1512. doi: 10.1172/JCI116018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sakai M., Miyazaki A., Hakamata H., Sasaki T., Yui S., Yamazaki M., Shichiri M., Horiuchi S. Lysophosphatidylcholine plays an essential role in the mitogenic effect of oxidized low density lipoprotein on murine macrophages. J Biol Chem. 1994 Dec 16;269(50):31430–31435. [PubMed] [Google Scholar]
  43. Sakurada T., Orimo H., Okabe H., Noma A., Murakami M. Purification and properties of cholesterol ester hydrolase from human aortic intima and media. Biochim Biophys Acta. 1976 Feb 23;424(2):204–212. [PubMed] [Google Scholar]
  44. Scanu A. M., Edelstein C. Solubility in aqueous solutions of ethanol of the small molecular weight peptides of the serum very low density and high density lipoproteins: relevance to the recovery problem during delipidation of serum lipoproteins. Anal Biochem. 1971 Dec;44(2):576–588. doi: 10.1016/0003-2697(71)90247-8. [DOI] [PubMed] [Google Scholar]
  45. Shen B. W., Scanu A. M., Kézdy F. J. Structure of human serum lipoproteins inferred from compositional analysis. Proc Natl Acad Sci U S A. 1977 Mar;74(3):837–841. doi: 10.1073/pnas.74.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Shirai K., Barnhart R. L., Jackson R. L. Hydrolysis of human plasma high density lipoprotein 2- phospholipids and triglycerides by hepatic lipase. Biochem Biophys Res Commun. 1981 May 29;100(2):591–599. doi: 10.1016/s0006-291x(81)80217-3. [DOI] [PubMed] [Google Scholar]
  47. Sokoloff L., Rothblat G. H. Sterol to phospholipid molar ratios of L cells with qualitative and quantitative variations of cellular sterol. Proc Soc Exp Biol Med. 1974 Sep;146(4):1166–1172. doi: 10.3181/00379727-146-38267. [DOI] [PubMed] [Google Scholar]
  48. Sparks D. L., Anantharamaiah G. M., Segrest J. P., Phillips M. C. Effect of the cholesterol content of reconstituted LpA-I on lecithin:cholesterol acyltransferase activity. J Biol Chem. 1995 Mar 10;270(10):5151–5157. doi: 10.1074/jbc.270.10.5151. [DOI] [PubMed] [Google Scholar]
  49. TROUT D. L., ESTES E. H., Jr, FRIEDBERG S. J. Titration of free fatty acids of plasma: a study of current methods and a new modification. J Lipid Res. 1960 Apr;1:199–202. [PubMed] [Google Scholar]
  50. Tsujita T., Muderhwa J. M., Brockman H. L. Lipid-lipid interactions as regulators of carboxylester lipase activity. J Biol Chem. 1989 May 25;264(15):8612–8618. [PubMed] [Google Scholar]
  51. Wang C. S., Hartsuck J. A. Bile salt-activated lipase. A multiple function lipolytic enzyme. Biochim Biophys Acta. 1993 Feb 10;1166(1):1–19. doi: 10.1016/0005-2760(93)90277-g. [DOI] [PubMed] [Google Scholar]
  52. Williams K. J., Fless G. M., Petrie K. A., Snyder M. L., Brocia R. W., Swenson T. L. Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent lipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans. J Biol Chem. 1992 Jul 5;267(19):13284–13292. [PubMed] [Google Scholar]
  53. Williams K. J., Petrie K. A., Brocia R. W., Swenson T. L. Lipoprotein lipase modulates net secretory output of apolipoprotein B in vitro. A possible pathophysiologic explanation for familial combined hyperlipidemia. J Clin Invest. 1991 Oct;88(4):1300–1306. doi: 10.1172/JCI115434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Williams K. J., Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995 May;15(5):551–561. doi: 10.1161/01.atv.15.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Winkler K. E., Harrison E. H., Marsh J. B., Glick J. M., Ross A. C. Characterization of a bile salt-dependent cholesteryl ester hydrolase activity secreted from HepG2 cells. Biochim Biophys Acta. 1992 Jun 22;1126(2):151–158. doi: 10.1016/0005-2760(92)90285-4. [DOI] [PubMed] [Google Scholar]
  56. Zolfaghari R., Glick J. M., Fisher E. A. The effects of varying the expression of a neutral cholesteryl ester hydrolase on the turnover of cholesteryl ester in rat hepatoma cells. J Biol Chem. 1993 Jun 25;268(18):13532–13538. [PubMed] [Google Scholar]
  57. Zolfaghari R., Harrison E. H., Han J. H., Rutter W. J., Fisher E. A. Tissue and species differences in bile salt-dependent neutral cholesteryl ester hydrolase activity and gene expression. Arterioscler Thromb. 1992 Mar;12(3):295–301. doi: 10.1161/01.atv.12.3.295. [DOI] [PubMed] [Google Scholar]
  58. Zolfaghari R., Harrison E. H., Ross A. C., Fisher E. A. Expression in Xenopus oocytes of rat liver mRNA coding for a bile salt-dependent cholesteryl ester hydrolase. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6913–6916. doi: 10.1073/pnas.86.18.6913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. van den Bosch H., de Jong J. G., Aarsman A. J. Lysophospholipases from bovine liver. Methods Enzymol. 1991;197:468–475. doi: 10.1016/0076-6879(91)97172-u. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES