Abstract
Proteolytically cleaved receptors, typified by the functional thrombin receptor (TR), represent a novel class of receptors that mediate signaling events by functional coupling to G proteins. Northern blot analysis completed with a human proteinase activated receptor-2 (PAR-2) cDNA as probe demonstrated the approximately 3.5kb PAR-2 transcript in total cellular RNA from human umbilical vein endothelial cells (HUVEC). Microspectrofluorimetry using Fura2-loaded HUVEC demonstrated a dose-dependent elevation in intracellular calcium transients ([Ca2+]i) to murine PAR39-44 (SLIGRL, putative neoligand after cleavage), with an approximate EC50 of 30 microM, and evidence for homologous desensitization with complete recovery at 45 min. Xenopus oocytes microinjected with TR cRNA failed to respond to 200 microM PAR39-44, and TR-targeted antisense oligonucleotides specifically abrogated thrombin-induced but not PAR39-44-mediated [Ca2+]i, excluding the possibility that TR/PAR-2 cell-surface coexpression was structurally linked. HUVEC incubated with PAR39-44 demonstrated a dose- and time-dependent mitogenic response similar to that seen with thrombin or TR42-47 (TR-activating peptide, SFLLRN). Preactivation of HUVEC with either PAR39-44 or thrombin resulted in heterologous desensitization to the corresponding agonist, an effect that was mediated primarily by TR internalization as evaluated by immunofluorescence and quantitative ELISA. These results ascribe a previously unrecognized function to the PAR-2 receptor, imply that a natural enzyme agonist may circulate in plasma, and suggest the presence of an additional regulatory mechanism controlling receptor activation events in vascular endothelial cells.
Full Text
The Full Text of this article is available as a PDF (370.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Axelrod J. H., Reich R., Miskin R. Expression of human recombinant plasminogen activators enhances invasion and experimental metastasis of H-ras-transformed NIH 3T3 cells. Mol Cell Biol. 1989 May;9(5):2133–2141. doi: 10.1128/mcb.9.5.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bahou W. F., Campbell A. D., Wicha M. S. cDNA cloning and molecular characterization of MSE55, a novel human serum constituent protein that displays bone marrow stromal/endothelial cell-specific expression. J Biol Chem. 1992 Jul 15;267(20):13986–13992. [PubMed] [Google Scholar]
- Bahou W. F., Coller B. S., Potter C. L., Norton K. J., Kutok J. L., Goligorsky M. S. The thrombin receptor extracellular domain contains sites crucial for peptide ligand-induced activation. J Clin Invest. 1993 Apr;91(4):1405–1413. doi: 10.1172/JCI116344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bahou W. F., Kutok J. L., Wong A., Potter C. L., Coller B. S. Identification of a novel thrombin receptor sequence required for activation-dependent responses. Blood. 1994 Dec 15;84(12):4195–4202. [PubMed] [Google Scholar]
- Bahou W. F., Potter C. L., Mirza H. The VLA-2 (alpha 2 beta 1) I domain functions as a ligand-specific recognition sequence for endothelial cell attachment and spreading: molecular and functional characterization. Blood. 1994 Dec 1;84(11):3734–3741. [PubMed] [Google Scholar]
- Brown J. K., Jones C. A., Tyler C. L., Ruoss S. J., Hartmann T., Caughey G. H. Tryptase-induced mitogenesis in airway smooth muscle cells. Potency, mechanisms, and interactions with other mast cell mediators. Chest. 1995 Mar;107(3 Suppl):95S–96S. doi: 10.1378/chest.107.3_supplement.95s. [DOI] [PubMed] [Google Scholar]
- Carney D. H., Mann R., Redin W. R., Pernia S. D., Berry D., Heggers J. P., Hayward P. G., Robson M. C., Christie J., Annable C. Enhancement of incisional wound healing and neovascularization in normal rats by thrombin and synthetic thrombin receptor-activating peptides. J Clin Invest. 1992 May;89(5):1469–1477. doi: 10.1172/JCI115737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaikof E. L., Caban R., Yan C. N., Rao G. N., Runge M. S. Growth-related responses in arterial smooth muscle cells are arrested by thrombin receptor antisense sequences. J Biol Chem. 1995 Mar 31;270(13):7431–7436. doi: 10.1074/jbc.270.13.7431. [DOI] [PubMed] [Google Scholar]
- Chambard J. C., Paris S., L'Allemain G., Pouysségur J. Two growth factor signalling pathways in fibroblasts distinguished by pertussis toxin. Nature. 1987 Apr 23;326(6115):800–803. doi: 10.1038/326800a0. [DOI] [PubMed] [Google Scholar]
- Chang W. C., Shi G. Y., Chow Y. H., Chang L. C., Hau J. S., Lin M. T., Jen C. J., Wing L. Y., Wu H. L. Human plasmin induces a receptor-mediated arachidonate release coupled with G proteins in endothelial cells. Am J Physiol. 1993 Feb;264(2 Pt 1):C271–C281. doi: 10.1152/ajpcell.1993.264.2.C271. [DOI] [PubMed] [Google Scholar]
- Chen J., Ishii M., Wang L., Ishii K., Coughlin S. R. Thrombin receptor activation. Confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J Biol Chem. 1994 Jun 10;269(23):16041–16045. [PubMed] [Google Scholar]
- Chen L. B., Buchanan J. M. Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc Natl Acad Sci U S A. 1975 Jan;72(1):131–135. doi: 10.1073/pnas.72.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coller B. S., Ward P., Ceruso M., Scudder L. E., Springer K., Kutok J., Prestwich G. D. Thrombin receptor activating peptides: importance of the N-terminal serine and its ionization state as judged by pH dependence, nuclear magnetic resonance spectroscopy, and cleavage by aminopeptidase M. Biochemistry. 1992 Dec 1;31(47):11713–11720. doi: 10.1021/bi00162a007. [DOI] [PubMed] [Google Scholar]
- Coughlin S. R. Protease-activated receptors start a family. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9200–9202. doi: 10.1073/pnas.91.20.9200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danø K., Andreasen P. A., Grøndahl-Hansen J., Kristensen P., Nielsen L. S., Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985;44:139–266. doi: 10.1016/s0065-230x(08)60028-7. [DOI] [PubMed] [Google Scholar]
- Davey M. G., Lüscher E. F. Actions of thrombin and other coagulant and proteolytic enzymes on blood platelets. Nature. 1967 Dec 2;216(5118):857–858. doi: 10.1038/216857a0. [DOI] [PubMed] [Google Scholar]
- Estreicher A., Wohlwend A., Belin D., Schleuning W. D., Vassalli J. D. Characterization of the cellular binding site for the urokinase-type plasminogen activator. J Biol Chem. 1989 Jan 15;264(2):1180–1189. [PubMed] [Google Scholar]
- Gerszten R. E., Chen J., Ishii M., Ishii K., Wang L., Nanevicz T., Turck C. W., Vu T. K., Coughlin S. R. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature. 1994 Apr 14;368(6472):648–651. doi: 10.1038/368648a0. [DOI] [PubMed] [Google Scholar]
- Glenn K. C., Carney D. H., Fenton J. W., 2nd, Cunningham D. D. Thrombin active site regions required for fibroblast receptor binding and initiation of cell division. J Biol Chem. 1980 Jul 25;255(14):6609–6616. [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hein L., Ishii K., Coughlin S. R., Kobilka B. K. Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. J Biol Chem. 1994 Nov 4;269(44):27719–27726. [PubMed] [Google Scholar]
- Ishii K., Hein L., Kobilka B., Coughlin S. R. Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. J Biol Chem. 1993 May 5;268(13):9780–9786. [PubMed] [Google Scholar]
- Kim D. W., Wang F., Ramakrishnan S., Scott D. L., Hensler T. M., Thompson W. C., Carney D. H. Mouse fibroblasts defective in thrombin mitogenesis possess functional proteolytically activated receptor for thrombin: requirement for a second signaling pathway. J Cell Physiol. 1994 Sep;160(3):573–584. doi: 10.1002/jcp.1041600321. [DOI] [PubMed] [Google Scholar]
- Lee N. H., Fraser C. M. Cross-talk between m1 muscarinic acetylcholine and beta 2-adrenergic receptors. cAMP and the third intracellular loop of m1 muscarinic receptors confer heterologous regulation. J Biol Chem. 1993 Apr 15;268(11):7949–7957. [PubMed] [Google Scholar]
- Liotta L. A., Steeg P. S., Stetler-Stevenson W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991 Jan 25;64(2):327–336. doi: 10.1016/0092-8674(91)90642-c. [DOI] [PubMed] [Google Scholar]
- Martin S. J., Green D. R. Protease activation during apoptosis: death by a thousand cuts? Cell. 1995 Aug 11;82(3):349–352. doi: 10.1016/0092-8674(95)90422-0. [DOI] [PubMed] [Google Scholar]
- McGowan E. B., Detwiler T. C. Modified platelet responses to thrombin. Evidence for two types of receptors or coupling mechanisms. J Biol Chem. 1986 Jan 15;261(2):739–746. [PubMed] [Google Scholar]
- McNamara C. A., Sarembock I. J., Gimple L. W., Fenton J. W., 2nd, Coughlin S. R., Owens G. K. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest. 1993 Jan;91(1):94–98. doi: 10.1172/JCI116206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molino M., Blanchard N., Belmonte E., Tarver A. P., Abrams C., Hoxie J. A., Cerletti C., Brass L. F. Proteolysis of the human platelet and endothelial cell thrombin receptor by neutrophil-derived cathepsin G. J Biol Chem. 1995 May 12;270(19):11168–11175. doi: 10.1074/jbc.270.19.11168. [DOI] [PubMed] [Google Scholar]
- Morris G. M., Hadcock J. R., Malbon C. C. Cross-regulation between G-protein-coupled receptors. Activation of beta 2-adrenergic receptors increases alpha 1-adrenergic receptor mRNA levels. J Biol Chem. 1991 Feb 5;266(4):2233–2238. [PubMed] [Google Scholar]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
- Nagy Z., Kolev K., Csonka E., Pék M., Machovich R. Contraction of human brain endothelial cells induced by thrombogenic and fibrinolytic factors. An in vitro cell culture model. Stroke. 1995 Feb;26(2):265–270. doi: 10.1161/01.str.26.2.265. [DOI] [PubMed] [Google Scholar]
- Ngaiza J. R., Jaffe E. A. A 14 amino acid peptide derived from the amino terminus of the cleaved thrombin receptor elevates intracellular calcium and stimulates prostacyclin production in human endothelial cells. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1656–1661. doi: 10.1016/0006-291x(91)91765-5. [DOI] [PubMed] [Google Scholar]
- Nystedt S., Emilsson K., Larsson A. K., Strömbeck B., Sundelin J. Molecular cloning and functional expression of the gene encoding the human proteinase-activated receptor 2. Eur J Biochem. 1995 Aug 15;232(1):84–89. doi: 10.1111/j.1432-1033.1995.tb20784.x. [DOI] [PubMed] [Google Scholar]
- Nystedt S., Emilsson K., Wahlestedt C., Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9208–9212. doi: 10.1073/pnas.91.20.9208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nystedt S., Larsson A. K., Aberg H., Sundelin J. The mouse proteinase-activated receptor-2 cDNA and gene. Molecular cloning and functional expression. J Biol Chem. 1995 Mar 17;270(11):5950–5955. doi: 10.1074/jbc.270.11.5950. [DOI] [PubMed] [Google Scholar]
- Pohjanpelto P. Stimulation of DNA synthesis in human fibroblasts by thrombin. J Cell Physiol. 1978 May;95(2):189–194. doi: 10.1002/jcp.1040950208. [DOI] [PubMed] [Google Scholar]
- Pustell J., Kafatos F. C. A convenient and adaptable microcomputer environment for DNA and protein sequence manipulation and analysis. Nucleic Acids Res. 1986 Jan 10;14(1):479–488. doi: 10.1093/nar/14.1.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reich R., Thompson E. W., Iwamoto Y., Martin G. R., Deason J. R., Fuller G. C., Miskin R. Effects of inhibitors of plasminogen activator, serine proteinases, and collagenase IV on the invasion of basement membranes by metastatic cells. Cancer Res. 1988 Jun 15;48(12):3307–3312. [PubMed] [Google Scholar]
- Scarborough R. M., Naughton M. A., Teng W., Hung D. T., Rose J., Vu T. K., Wheaton V. I., Turck C. W., Coughlin S. R. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem. 1992 Jul 5;267(19):13146–13149. [PubMed] [Google Scholar]
- Schmeidler-Sapiro K. T., Ratnoff O. D., Gordon E. M. Mitogenic effects of coagulation factor XII and factor XIIa on HepG2 cells. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4382–4385. doi: 10.1073/pnas.88.10.4382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shuman M. A. Thrombin-cellular interactions. Ann N Y Acad Sci. 1986;485:228–239. doi: 10.1111/j.1749-6632.1986.tb34585.x. [DOI] [PubMed] [Google Scholar]
- Smith J. A., Webb C., Holford J., Burgess G. M. Signal transduction pathways for B1 and B2 bradykinin receptors in bovine pulmonary artery endothelial cells. Mol Pharmacol. 1995 Mar;47(3):525–534. [PubMed] [Google Scholar]
- Tesfamariam B., Allen G. T., Normandin D., Antonaccio M. J. Involvement of the "tethered ligand" receptor in thrombin-induced endothelium-mediated relaxations. Am J Physiol. 1993 Nov;265(5 Pt 2):H1744–H1749. doi: 10.1152/ajpheart.1993.265.5.H1744. [DOI] [PubMed] [Google Scholar]
- Vassallo R. R., Jr, Kieber-Emmons T., Cichowski K., Brass L. F. Structure-function relationships in the activation of platelet thrombin receptors by receptor-derived peptides. J Biol Chem. 1992 Mar 25;267(9):6081–6085. [PubMed] [Google Scholar]
- Vouret-Craviari V., Van Obberghen-Schilling E., Rasmussen U. B., Pavirani A., Lecocq J. P., Pouysségur J. Synthetic alpha-thrombin receptor peptides activate G protein-coupled signaling pathways but are unable to induce mitogenesis. Mol Biol Cell. 1992 Jan;3(1):95–102. doi: 10.1091/mbc.3.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
- Vu T. K., Wheaton V. I., Hung D. T., Charo I., Coughlin S. R. Domains specifying thrombin-receptor interaction. Nature. 1991 Oct 17;353(6345):674–677. doi: 10.1038/353674a0. [DOI] [PubMed] [Google Scholar]
- Wang M., Stearns M. E. Blocking of collagenase secretion by estramustine during in vitro tumor cell invasion. Cancer Res. 1988 Nov 15;48(22):6262–6271. [PubMed] [Google Scholar]
- Weksler B. B., Ley C. W., Jaffe E. A. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A 23187. J Clin Invest. 1978 Nov;62(5):923–930. doi: 10.1172/JCI109220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woolkalis M. J., DeMelfi T. M., Jr, Blanchard N., Hoxie J. A., Brass L. F. Regulation of thrombin receptors on human umbilical vein endothelial cells. J Biol Chem. 1995 Apr 28;270(17):9868–9875. doi: 10.1074/jbc.270.17.9868. [DOI] [PubMed] [Google Scholar]
- Zacharias U., Xu Y., Hagège J., Sraer J. D., Brass L. F., Rondeau E. Thrombin, phorbol ester, and cAMP regulate thrombin receptor protein and mRNA expression by different pathways. J Biol Chem. 1995 Jan 13;270(2):545–550. doi: 10.1074/jbc.270.2.545. [DOI] [PubMed] [Google Scholar]
- Zhong C., Hayzer D. J., Corson M. A., Runge M. S. Molecular cloning of the rat vascular smooth muscle thrombin receptor. Evidence for in vitro regulation by basic fibroblast growth factor. J Biol Chem. 1992 Aug 25;267(24):16975–16979. [PubMed] [Google Scholar]
- Zucker S., Conner C., DiMassmo B. I., Ende H., Drews M., Seiki M., Bahou W. F. Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physiologic regulation of angiogenesis. J Biol Chem. 1995 Oct 6;270(40):23730–23738. doi: 10.1074/jbc.270.40.23730. [DOI] [PubMed] [Google Scholar]