Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Apr 1;97(7):1767–1773. doi: 10.1172/JCI118604

Increased atherosclerosis in streptozotocin-induced diabetic mice.

V V Kunjathoor 1, D L Wilson 1, R C LeBoeuf 1
PMCID: PMC507242  PMID: 8601643

Abstract

Premature and extensive atheroscleroses involving renal, peripheral, and cardiovascular sites remain major complications of diabetes mellitus. Controversy exists as to the contribution of hyperglycemia versus elevated local or systemic concentrations of insulin to atherosclerosis risk. In this report, we developed the first murine model susceptible to both atherosclerosis and diabetes to determine which diabetogenic factors contribute to vascular disease. C57BL/6 and BALB/c mice were treated with multiple low-dose streptozotocin (STZ) or control citrate buffer and fed rodent chow or an atherogenic-promoting (Ath) diet for 12-20 wk. STZ treatment resulted in sustained hyperglycemia (250-420 mg/dl) and a modest reduction in plasma insulin levels for both strains regardless of diet. Citrate-treated C57BL/6 mice fed the Ath diet showed extensive oil red O-staining fatty streak aortic sinus lesions (20,537+/-2,957 micron2), the size of which did not differ for Ath-fed mice treated with STZ (16,836+/-2,136 micron2). In contrast, hyperglycemic BALB/c mice fed the Ath diet showed a 17-fold increase in atherosclerotic lesion area (7,922+/-2,096 micron2) as compared with citrate-treated mice fed the Ath diet (467+/-318 micron2). Correlations between lesion size and plasma glucose levels were significant for BALB/c (r = 0.741, P < 0.009), but not C57BL/6 (r = 0.314, P<0.3) mice. Lesion size correlated significantly with plasma cholesterol for C57BL/6 (r = 0.612, P<0.03) but not BALB/c (r = 0.630, P<0.1) mice. Immunohistochemistry showed that aortic sinus lesions from both strains contained macrophages, but smooth muscle cells were clearly present in lesions of BALB/c mice. In summary, we present the first small animal model showing accelerated atherosclerosis in response to hyperglycemia. Fatty streaks resembled those of human type II lesions in that both macrophages and smooth muscle cells were evident. In addition, our results support the concept that hyperglycemia as opposed to hyperinsulinemia contributes heavily to risk of atherosclerosis.

Full Text

The Full Text of this article is available as a PDF (274.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen A. R., Christiansen J. S., Andersen J. K., Kreiner S., Deckert T. Diabetic nephropathy in Type 1 (insulin-dependent) diabetes: an epidemiological study. Diabetologia. 1983 Dec;25(6):496–501. doi: 10.1007/BF00284458. [DOI] [PubMed] [Google Scholar]
  2. Barbaras R., Puchois P., Fruchart J. C., Ailhaud G. Cholesterol efflux from cultured adipose cells is mediated by LpAI particles but not by LpAI:AII particles. Biochem Biophys Res Commun. 1987 Jan 15;142(1):63–69. doi: 10.1016/0006-291x(87)90451-7. [DOI] [PubMed] [Google Scholar]
  3. Baynes J. W. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991 Apr;40(4):405–412. doi: 10.2337/diab.40.4.405. [DOI] [PubMed] [Google Scholar]
  4. Bierman E. L. George Lyman Duff Memorial Lecture. Atherogenesis in diabetes. Arterioscler Thromb. 1992 Jun;12(6):647–656. doi: 10.1161/01.atv.12.6.647. [DOI] [PubMed] [Google Scholar]
  5. Biesbroeck R. C., Albers J. J., Wahl P. W., Weinberg C. R., Bassett M. L., Bierman E. L. Abnormal composition of high density lipoproteins in non-insulin-dependent diabetics. Diabetes. 1982 Feb;31(2):126–131. doi: 10.2337/diab.31.2.126. [DOI] [PubMed] [Google Scholar]
  6. Bonnevie-Nielsen V., Steffes M. W., Lernmark A. A major loss in islet mass and B-cell function precedes hyperglycemia in mice given multiple low doses of streptozotocin. Diabetes. 1981 May;30(5):424–429. doi: 10.2337/diab.30.5.424. [DOI] [PubMed] [Google Scholar]
  7. Carr T. P., Andresen C. J., Rudel L. L. Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clin Biochem. 1993 Feb;26(1):39–42. doi: 10.1016/0009-9120(93)90015-x. [DOI] [PubMed] [Google Scholar]
  8. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  9. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  10. Hunt J. V., Bottoms M. A., Clare K., Skamarauskas J. T., Mitchinson M. J. Glucose oxidation and low-density lipoprotein-induced macrophage ceroid accumulation: possible implications for diabetic atherosclerosis. Biochem J. 1994 May 15;300(Pt 1):243–249. doi: 10.1042/bj3000243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Inoguchi T., Xia P., Kunisaki M., Higashi S., Feener E. P., King G. L. Insulin's effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am J Physiol. 1994 Sep;267(3 Pt 1):E369–E379. doi: 10.1152/ajpendo.1994.267.3.E369. [DOI] [PubMed] [Google Scholar]
  12. Izzo C., Grillo F., Murador E. Improved method for determination of high-density-lipoprotein cholesterol I. Isolation of high-density lipoproteins by use of polyethylene glycol 6000. Clin Chem. 1981 Mar;27(3):371–374. [PubMed] [Google Scholar]
  13. Krolewski A. S., Kosinski E. J., Warram J. H., Leland O. S., Busick E. J., Asmal A. C., Rand L. I., Christlieb A. R., Bradley R. F., Kahn C. R. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol. 1987 Apr 1;59(8):750–755. doi: 10.1016/0002-9149(87)91086-1. [DOI] [PubMed] [Google Scholar]
  14. LeBoeuf R. C., Caldwell M., Kirk E. Regulation by nutritional status of lipids and apolipoproteins A-I, A-II, and A-IV in inbred mice. J Lipid Res. 1994 Jan;35(1):121–133. [PubMed] [Google Scholar]
  15. LeBoeuf R. C., Doolittle M. H., Montcalm A., Martin D. C., Reue K., Lusis A. J. Phenotypic characterization of the Ath-1 gene controlling high density lipoprotein levels and susceptibility to atherosclerosis. J Lipid Res. 1990 Jan;31(1):91–101. [PubMed] [Google Scholar]
  16. Liao F., Andalibi A., deBeer F. C., Fogelman A. M., Lusis A. J. Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice. J Clin Invest. 1993 Jun;91(6):2572–2579. doi: 10.1172/JCI116495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lyons T. J. Lipoprotein glycation and its metabolic consequences. Diabetes. 1992 Oct;41 (Suppl 2):67–73. doi: 10.2337/diab.41.2.s67. [DOI] [PubMed] [Google Scholar]
  18. Miller R. A., Wilson R. B. Atherosclerosis and myocardial ischemic lesions in alloxan-diabetic rabbits fed a low cholesterol diet. Arteriosclerosis. 1984 Nov-Dec;4(6):586–591. doi: 10.1161/01.atv.4.6.586. [DOI] [PubMed] [Google Scholar]
  19. Mullarkey C. J., Edelstein D., Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun. 1990 Dec 31;173(3):932–939. doi: 10.1016/s0006-291x(05)80875-7. [DOI] [PubMed] [Google Scholar]
  20. Nakashima Y., Plump A. S., Raines E. W., Breslow J. L., Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994 Jan;14(1):133–140. doi: 10.1161/01.atv.14.1.133. [DOI] [PubMed] [Google Scholar]
  21. Nishina P. M., Naggert J. K., Verstuyft J., Paigen B. Atherosclerosis in genetically obese mice: the mutants obese, diabetes, fat, tubby, and lethal yellow. Metabolism. 1994 May;43(5):554–558. doi: 10.1016/0026-0495(94)90195-3. [DOI] [PubMed] [Google Scholar]
  22. Nishina P. M., Verstuyft J., Paigen B. Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res. 1990 May;31(5):859–869. [PubMed] [Google Scholar]
  23. Nordestgaard B. G., Stender S., Kjeldsen K. Reduced atherogenesis in cholesterol-fed diabetic rabbits. Giant lipoproteins do not enter the arterial wall. Arteriosclerosis. 1988 Jul-Aug;8(4):421–428. doi: 10.1161/01.atv.8.4.421. [DOI] [PubMed] [Google Scholar]
  24. Olgemöller B., Schleicher E. Alterations of glomerular matrix proteins in the pathogenesis of diabetic nephropathy. Clin Investig. 1993;71(5 Suppl):S13–S19. doi: 10.1007/BF00180071. [DOI] [PubMed] [Google Scholar]
  25. Oram J. F. Can insulin promote atherogenesis by altering cellular cholesterol metabolism? J Lab Clin Med. 1995 Sep;126(3):229–230. [PubMed] [Google Scholar]
  26. Paigen B., Ishida B. Y., Verstuyft J., Winters R. B., Albee D. Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis. 1990 Mar-Apr;10(2):316–323. doi: 10.1161/01.atv.10.2.316. [DOI] [PubMed] [Google Scholar]
  27. Paigen B., Morrow A., Holmes P. A., Mitchell D., Williams R. A. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis. 1987 Dec;68(3):231–240. doi: 10.1016/0021-9150(87)90202-4. [DOI] [PubMed] [Google Scholar]
  28. Pfeiffer A., Schatz H. Diabetic microvascular complications and growth factors. Exp Clin Endocrinol Diabetes. 1995;103(1):7–14. doi: 10.1055/s-0029-1211323. [DOI] [PubMed] [Google Scholar]
  29. Pyörälä K., Laakso M., Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev. 1987 Apr;3(2):463–524. doi: 10.1002/dmr.5610030206. [DOI] [PubMed] [Google Scholar]
  30. Qiao J. H., Xie P. Z., Fishbein M. C., Kreuzer J., Drake T. A., Demer L. L., Lusis A. J. Pathology of atheromatous lesions in inbred and genetically engineered mice. Genetic determination of arterial calcification. Arterioscler Thromb. 1994 Sep;14(9):1480–1497. doi: 10.1161/01.atv.14.9.1480. [DOI] [PubMed] [Google Scholar]
  31. STILL W. J., MARTIN J. M., GREGOR W. H. THE EFFECT OF ALLOXAN DIABETES ON EXPERIMENTAL ATHEROSCLEROSIS IN THE RAT. Exp Mol Pathol. 1964 Apr;34:141–147. doi: 10.1016/0014-4800(64)90047-4. [DOI] [PubMed] [Google Scholar]
  32. Stary H. C., Chandler A. B., Glagov S., Guyton J. R., Insull W., Jr, Rosenfeld M. E., Schaffer S. A., Schwartz C. J., Wagner W. D., Wissler R. W. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1994 May;89(5):2462–2478. doi: 10.1161/01.cir.89.5.2462. [DOI] [PubMed] [Google Scholar]
  33. Stewart-Phillips J. L., Lough J. Pathology of atherosclerosis in cholesterol-fed, susceptible mice. Atherosclerosis. 1991 Oct;90(2-3):211–218. doi: 10.1016/0021-9150(91)90117-l. [DOI] [PubMed] [Google Scholar]
  34. Xia P., Inoguchi T., Kern T. S., Engerman R. L., Oates P. J., King G. L. Characterization of the mechanism for the chronic activation of diacylglycerol-protein kinase C pathway in diabetes and hypergalactosemia. Diabetes. 1994 Sep;43(9):1122–1129. doi: 10.2337/diab.43.9.1122. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES