Abstract
We studied bovine subjects that exhibited a moderate uncompensated anemia with hereditary spherocytosis inherited in an autosomal incompletely dominant mode and retarded growth. Based on the results of SDS-PAGE, immunoblotting, and electron microscopic analysis by the freeze fracture method, we show here that the proband red cells lacked the band 3 protein completely. Sequence analysis of the proband band 3 cDNA and genomic DNA showed a C --> T substitution resulting in a nonsense mutation (CGA --> TGA; Arg --> Stop) at the position corresponding to codon 646 in human red cell band 3 cDNA. The proband red cells were deficient in spectrin, ankyrin, actin, and protein 4.2, resulting in a distorted and disrupted membrane skeletal network with decreased density. Therefore, the proband red cell membranes were extremely unstable and showed the loss of surface area in several distinct ways such as invagination, vesiculation, and extrusion of microvesicles, leading to the formation of spherocytes. Total deficiency of band 3 also resulted in defective Cl-/HCO3- exchange, causing mild acidosis with decreases in the HCO3- concentration and total CO2 in the proband blood. Our results demonstrate that band 3 indeed contributes to red cell membrane stability, CO2 transport, and acid-base homeostasis, but is not always essential to the survival of this mammal.
Full Text
The Full Text of this article is available as a PDF (982.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alper S. L., Natale J., Gluck S., Lodish H. F., Brown D. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5429–5433. doi: 10.1073/pnas.86.14.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alper S. L. The band 3-related anion exchanger (AE) gene family. Annu Rev Physiol. 1991;53:549–564. doi: 10.1146/annurev.ph.53.030191.003001. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Braell W. A., Lodish H. F. The erythrocyte anion transport protein is contranslationally inserted into microsomes. Cell. 1982 Jan;28(1):23–31. doi: 10.1016/0092-8674(82)90371-3. [DOI] [PubMed] [Google Scholar]
- Brahm J. Temperature-dependent changes of chloride transport kinetics in human red cells. J Gen Physiol. 1977 Sep;70(3):283–306. doi: 10.1085/jgp.70.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Busa W. B., Nuccitelli R. Metabolic regulation via intracellular pH. Am J Physiol. 1984 Apr;246(4 Pt 2):R409–R438. doi: 10.1152/ajpregu.1984.246.4.R409. [DOI] [PubMed] [Google Scholar]
- Cabantchik Z. I., Knauf P. A., Rothstein A. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of 'probes'. Biochim Biophys Acta. 1978 Sep 29;515(3):239–302. doi: 10.1016/0304-4157(78)90016-3. [DOI] [PubMed] [Google Scholar]
- Cheng S. H., Gregory R. J., Marshall J., Paul S., Souza D. W., White G. A., O'Riordan C. R., Smith A. E. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell. 1990 Nov 16;63(4):827–834. doi: 10.1016/0092-8674(90)90148-8. [DOI] [PubMed] [Google Scholar]
- Fidelman M. L., Seeholzer S. H., Walsh K. B., Moore R. D. Intracellular pH mediates action of insulin on glycolysis in frog skeletal muscle. Am J Physiol. 1982 Jan;242(1):C87–C93. doi: 10.1152/ajpcell.1982.242.1.C87. [DOI] [PubMed] [Google Scholar]
- Ganz M. B., Boyarsky G., Sterzel R. B., Boron W. F. Arginine vasopressin enhances pHi regulation in the presence of HCO3- by stimulating three acid-base transport systems. Nature. 1989 Feb 16;337(6208):648–651. doi: 10.1038/337648a0. [DOI] [PubMed] [Google Scholar]
- Groves J. D., Tanner M. J. Co-expressed complementary fragments of the human red cell anion exchanger (band 3, AE1) generate stilbene disulfonate-sensitive anion transport. J Biol Chem. 1995 Apr 21;270(16):9097–9105. doi: 10.1074/jbc.270.16.9097. [DOI] [PubMed] [Google Scholar]
- Halperin J. A., Brugnara C., Tosteson M. T., Van Ha T., Tosteson D. C. Voltage-activated cation transport in human erythrocytes. Am J Physiol. 1989 Nov;257(5 Pt 1):C986–C996. doi: 10.1152/ajpcell.1989.257.5.C986. [DOI] [PubMed] [Google Scholar]
- Hanspal M., Hanspal J. S., Kalraiya R., Liu S. C., Sahr K. E., Howard D., Palek J. Asynchronous synthesis of membrane skeletal proteins during terminal maturation of murine erythroblasts. Blood. 1992 Jul 15;80(2):530–539. [PubMed] [Google Scholar]
- Inaba M., Amano Y., Maede Y. Two novel molecular isoforms of band 4.2 in Japanese Sika deer (Cervus nippon yesoensis, Heude) erythrocytes. Biochim Biophys Acta. 1990 Jan 15;1021(1):101–104. doi: 10.1016/0005-2736(90)90391-z. [DOI] [PubMed] [Google Scholar]
- Inaba M., Gupta K. C., Kuwabara M., Takahashi T., Benz E. J., Jr, Maede Y. Deamidation of human erythrocyte protein 4.1: possible role in aging. Blood. 1992 Jun 15;79(12):3355–3361. [PubMed] [Google Scholar]
- Inaba M., Maede Y. A new major transmembrane glycoprotein, gp155, in goat erythrocytes. Isolation and characterization of its association to cytoskeleton through binding with band 3-ankyrin complex. J Biol Chem. 1988 Nov 25;263(33):17763–17771. [PubMed] [Google Scholar]
- Inaba M., Maede Y. Increase of Na+ gradient-dependent L-glutamate and L-aspartate transport in high K+ dog erythrocytes associated with high activity of (Na+, K+)-ATPase. J Biol Chem. 1984 Jan 10;259(1):312–317. [PubMed] [Google Scholar]
- Inaba M., Maede Y. Na,K-ATPase in dog red cells. Immunological identification and maturation-associated degradation by the proteolytic system. J Biol Chem. 1986 Dec 5;261(34):16099–16105. [PubMed] [Google Scholar]
- Jarolim P., Palek J., Amato D., Hassan K., Sapak P., Nurse G. T., Rubin H. L., Zhai S., Sahr K. E., Liu S. C. Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11022–11026. doi: 10.1073/pnas.88.24.11022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarolim P., Palek J., Rubin H. L., Prchal J. T., Korsgren C., Cohen C. M. Band 3 Tuscaloosa: Pro327----Arg327 substitution in the cytoplasmic domain of erythrocyte band 3 protein associated with spherocytic hemolytic anemia and partial deficiency of protein 4.2. Blood. 1992 Jul 15;80(2):523–529. [PubMed] [Google Scholar]
- Jarolim P., Rubin H. L., Brabec V., Chrobak L., Zolotarev A. S., Alper S. L., Brugnara C., Wichterle H., Palek J. Mutations of conserved arginines in the membrane domain of erythroid band 3 lead to a decrease in membrane-associated band 3 and to the phenotype of hereditary spherocytosis. Blood. 1995 Feb 1;85(3):634–640. [PubMed] [Google Scholar]
- Jarolim P., Rubin H. L., Liu S. C., Cho M. R., Brabec V., Derick L. H., Yi S. J., Saad S. T., Alper S., Brugnara C. Duplication of 10 nucleotides in the erythroid band 3 (AE1) gene in a kindred with hereditary spherocytosis and band 3 protein deficiency (band 3PRAGUE). J Clin Invest. 1994 Jan;93(1):121–130. doi: 10.1172/JCI116935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jay D., Cantley L. Structural aspects of the red cell anion exchange protein. Annu Rev Biochem. 1986;55:511–538. doi: 10.1146/annurev.bi.55.070186.002455. [DOI] [PubMed] [Google Scholar]
- Jennings M. L. Structure and function of the red blood cell anion transport protein. Annu Rev Biophys Biophys Chem. 1989;18:397–430. doi: 10.1146/annurev.bb.18.060189.002145. [DOI] [PubMed] [Google Scholar]
- Johnstone R. M., Bianchini A., Teng K. Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood. 1989 Oct;74(5):1844–1851. [PubMed] [Google Scholar]
- Kawano Y., Okubo K., Tokunaga F., Miyata T., Iwanaga S., Hamasaki N. Localization of the pyridoxal phosphate binding site at the COOH-terminal region of erythrocyte band 3 protein. J Biol Chem. 1988 Jun 15;263(17):8232–8238. [PubMed] [Google Scholar]
- Knauf P. A., Breuer W., McCulloch L., Rothstein A. N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system. J Gen Physiol. 1978 Nov;72(5):631–649. doi: 10.1085/jgp.72.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knauf P. A., Ship S., Breuer W., McCulloch L., Rothstein A. Asymmetry of the red cell anion exchange system. Different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane. J Gen Physiol. 1978 Nov;72(5):607–630. doi: 10.1085/jgp.72.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koury M. J., Bondurant M. C., Rana S. S. Changes in erythroid membrane proteins during erythropoietin-mediated terminal differentiation. J Cell Physiol. 1987 Dec;133(3):438–448. doi: 10.1002/jcp.1041330304. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Law F. Y., Steinfeld R., Knauf P. A. K562 cell anion exchange differs markedly from that of mature red blood cells. Am J Physiol. 1983 Jan;244(1):C68–C74. doi: 10.1152/ajpcell.1983.244.1.C68. [DOI] [PubMed] [Google Scholar]
- Liu S. C., Derick L. H., Palek J. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J Cell Biol. 1987 Mar;104(3):527–536. doi: 10.1083/jcb.104.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu S. C., Jarolim P., Rubin H. L., Palek J., Amato D., Hassan K., Zaik M., Sapak P. The homozygous state for the band 3 protein mutation in Southeast Asian Ovalocytosis may be lethal. Blood. 1994 Nov 15;84(10):3590–3591. [PubMed] [Google Scholar]
- Liu S. C., Zhai S., Palek J., Golan D. E., Amato D., Hassan K., Nurse G. T., Babona D., Coetzer T., Jarolim P. Molecular defect of the band 3 protein in southeast Asian ovalocytosis. N Engl J Med. 1990 Nov 29;323(22):1530–1538. doi: 10.1056/NEJM199011293232205. [DOI] [PubMed] [Google Scholar]
- Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
- Low P. S., Willardson B. M., Mohandas N., Rossi M., Shohet S. Contribution of the band 3-ankyrin interaction to erythrocyte membrane mechanical stability. Blood. 1991 Apr 1;77(7):1581–1586. [PubMed] [Google Scholar]
- Lux S. E., John K. M., Kopito R. R., Lodish H. F. Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). Proc Natl Acad Sci U S A. 1989 Dec;86(23):9089–9093. doi: 10.1073/pnas.86.23.9089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makino S., Moriyama R., Kitahara T., Koga S. Proteolytic digestion of band 3 from bovine erythrocyte membranes in membrane-bound and solubilized states. J Biochem. 1984 Apr;95(4):1019–1029. doi: 10.1093/oxfordjournals.jbchem.a134689. [DOI] [PubMed] [Google Scholar]
- Mohandas N., Winardi R., Knowles D., Leung A., Parra M., George E., Conboy J., Chasis J. Molecular basis for membrane rigidity of hereditary ovalocytosis. A novel mechanism involving the cytoplasmic domain of band 3. J Clin Invest. 1992 Feb;89(2):686–692. doi: 10.1172/JCI115636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore R. D., Fidelman M. L., Seeholzer S. H. Correlation between insulin action upon glycolysis and change in intracellular pH. Biochem Biophys Res Commun. 1979 Dec 14;91(3):905–910. doi: 10.1016/0006-291x(79)91965-x. [DOI] [PubMed] [Google Scholar]
- Moriyama R., Kawamatsu S., Kondo Y., Tomida M., Makino S. Antigenic determinants of the cytoplasmic domain of band 3 from bovine erythrocyte membrane. Arch Biochem Biophys. 1989 Oct;274(1):130–137. doi: 10.1016/0003-9861(89)90423-2. [DOI] [PubMed] [Google Scholar]
- Moriyama R., Nagatomi Y., Hoshino F., Makino S. Amino acid sequences around exofacial proteolytic cleavage sites of band 3 from bovine and porcine erythrocytes. Int J Biochem. 1994 Jan;26(1):133–137. doi: 10.1016/0020-711x(94)90206-2. [DOI] [PubMed] [Google Scholar]
- Palek J., Jarolim P. Clinical expression and laboratory detection of red blood cell membrane protein mutations. Semin Hematol. 1993 Oct;30(4):249–283. [PubMed] [Google Scholar]
- Palek J., Sahr K. E. Mutations of the red blood cell membrane proteins: from clinical evaluation to detection of the underlying genetic defect. Blood. 1992 Jul 15;80(2):308–330. [PubMed] [Google Scholar]
- Pouysségur J., Sardet C., Franchi A., L'Allemain G., Paris S. A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4833–4837. doi: 10.1073/pnas.81.15.4833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Rybicki A. C., Qiu J. J., Musto S., Rosen N. L., Nagel R. L., Schwartz R. S. Human erythrocyte protein 4.2 deficiency associated with hemolytic anemia and a homozygous 40glutamic acid-->lysine substitution in the cytoplasmic domain of band 3 (band 3Montefiore). Blood. 1993 Apr 15;81(8):2155–2165. [PubMed] [Google Scholar]
- Schofield A. E., Reardon D. M., Tanner M. J. Defective anion transport activity of the abnormal band 3 in hereditary ovalocytic red blood cells. Nature. 1992 Feb 27;355(6363):836–838. doi: 10.1038/355836a0. [DOI] [PubMed] [Google Scholar]
- Tanner M. J., Bruce L., Martin P. G., Rearden D. M., Jones G. L. Melanesian hereditary ovalocytes have a deletion in red cell band 3. Blood. 1991 Nov 15;78(10):2785–2786. [PubMed] [Google Scholar]
- Tanner M. J., Martin P. G., High S. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J. 1988 Dec 15;256(3):703–712. doi: 10.1042/bj2560703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner M. J. Molecular and cellular biology of the erythrocyte anion exchanger (AE1). Semin Hematol. 1993 Jan;30(1):34–57. [PubMed] [Google Scholar]
- Wagner S., Vogel R., Lietzke R., Koob R., Drenckhahn D. Immunochemical characterization of a band 3-like anion exchanger in collecting duct of human kidney. Am J Physiol. 1987 Aug;253(2 Pt 2):F213–F221. doi: 10.1152/ajprenal.1987.253.2.F213. [DOI] [PubMed] [Google Scholar]
- Ward C. L., Kopito R. R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem. 1994 Oct 14;269(41):25710–25718. [PubMed] [Google Scholar]
- Wieth J. O., Andersen O. S., Brahm J., Bjerrum P. J., Borders C. L., Jr Chloride--bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):383–399. doi: 10.1098/rstb.1982.0139. [DOI] [PubMed] [Google Scholar]
- Woods C. M., Boyer B., Vogt P. K., Lazarides E. Control of erythroid differentiation: asynchronous expression of the anion transporter and the peripheral components of the membrane skeleton in AEV- and S13-transformed cells. J Cell Biol. 1986 Nov;103(5):1789–1798. doi: 10.1083/jcb.103.5.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yawata A., Kanzaki A., Uehira K., Yawata Y. A surface replica method: a useful tool for studies of the cytoskeletal network in red cell membranes of normal subjects and patients with a beta-spectrin mutant (spectrin Le Puy: beta 220/214). Virchows Arch. 1994;425(3):297–304. doi: 10.1007/BF00196153. [DOI] [PubMed] [Google Scholar]
- Yawata Y. Red cell membrane protein band 4.2: phenotypic, genetic and electron microscopic aspects. Biochim Biophys Acta. 1994 Feb 16;1204(2):131–148. doi: 10.1016/0167-4838(94)90001-9. [DOI] [PubMed] [Google Scholar]
- Yawata Y., Yawata A., Kanzaki A., Inoue T., Okamoto N., Uehira K., Yasunaga M., Nakamura Y. Electron microscopic evidence of impaired intramembrane particles and instability of the cytoskeletal network in band 4.2 deficiency in human red cells. Cell Motil Cytoskeleton. 1996;33(2):95–105. doi: 10.1002/(SICI)1097-0169(1996)33:2<95::AID-CM3>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
