Abstract
Urokinase (uPA) is hypothesized to provide proteolytic activity enabling inflammatory cells to traverse tissues during recruitment, and it is implicated as a cytokine modulator. Definitive evaluation of these hypotheses in vivo has previously been impossible because uPA could not completely and irreversibly be eliminated. This limitation has been overcome through the development of uPA-deficient transgenic mice (uPA-/-). Using these mice, we evaluated the importance of uPA in the pulmonary inflammatory response to Cryptococcus neoformans (strain 52D). C. neoformans was inoculated into uPA-/- and control mice (uPA+/+), and cell recruitment to the lungs was quantitated. The number of CFU in lung, spleen and brain was determined to assess clearance, and survival curves were generated. By day 21 after inoculation, uPA-/- mice had markedly fewer pulmonary inflammatory (CD45+), CD4+, and CD11b/CD18+ cells compared with uPA+/+ controls (P<0.0007); pulmonary CFUs in the uPA-/- mice continued to increase, whereas CFUs diminished in uPA+/+ mice(P<0.005). In survival studies, only 3/19 uPA+/+ mice died, whereas 15/19 uPA-/- mice died (p<0.001). We have demonstrated that uPA is required for a pulmonary inflammatory response to C. neoformans. Lack of uPA results in inadequate cellular recruitment, uncontrolled infection, and death.
Full Text
The Full Text of this article is available as a PDF (741.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auberger P., Sonthonnax S., Peyron J. F., Mari B., Fehlmann M. A chymotryptic-type serine protease is required for IL-2 production by Jurkat T cells. Immunology. 1990 Aug;70(4):547–550. [PMC free article] [PubMed] [Google Scholar]
- Baker M. S., Bleakley P., Woodrow G. C., Doe W. F. Inhibition of cancer cell urokinase plasminogen activator by its specific inhibitor PAI-2 and subsequent effects on extracellular matrix degradation. Cancer Res. 1990 Aug 1;50(15):4676–4684. [PubMed] [Google Scholar]
- Carmeliet P., Schoonjans L., Kieckens L., Ream B., Degen J., Bronson R., De Vos R., van den Oord J. J., Collen D., Mulligan R. C. Physiological consequences of loss of plasminogen activator gene function in mice. Nature. 1994 Mar 31;368(6470):419–424. doi: 10.1038/368419a0. [DOI] [PubMed] [Google Scholar]
- Chapman H. A., Jr, Reilly J. J., Jr, Kobzik L. Role of plasminogen activator in degradation of extracellular matrix protein by live human alveolar macrophages. Am Rev Respir Dis. 1988 Feb;137(2):412–419. doi: 10.1164/ajrccm/137.2.412. [DOI] [PubMed] [Google Scholar]
- Chen G. H., Curtis J. L., Mody C. H., Christensen P. J., Armstrong L. R., Toews G. B. Effect of granulocyte-macrophage colony-stimulating factor on rat alveolar macrophage anticryptococcal activity in vitro. J Immunol. 1994 Jan 15;152(2):724–734. [PubMed] [Google Scholar]
- Chuck S. L., Sande M. A. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med. 1989 Sep 21;321(12):794–799. doi: 10.1056/NEJM198909213211205. [DOI] [PubMed] [Google Scholar]
- Collins H. L., Bancroft G. J. Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Eur J Immunol. 1992 Jun;22(6):1447–1454. doi: 10.1002/eji.1830220617. [DOI] [PubMed] [Google Scholar]
- Curtis J. L., Huffnagle G. B., Chen G. H., Warnock M. L., Gyetko M. R., McDonald R. A., Scott P. J., Toews G. B. Experimental murine pulmonary cryptococcosis. Differences in pulmonary inflammation and lymphocyte recruitment induced by two encapsulated strains of Cryptococcus neoformans. Lab Invest. 1994 Jul;71(1):113–126. [PubMed] [Google Scholar]
- Danø K., Andreasen P. A., Grøndahl-Hansen J., Kristensen P., Nielsen L. S., Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res. 1985;44:139–266. doi: 10.1016/s0065-230x(08)60028-7. [DOI] [PubMed] [Google Scholar]
- Degen S. J., Heckel J. L., Reich E., Degen J. L. The murine urokinase-type plasminogen activator gene. Biochemistry. 1987 Dec 15;26(25):8270–8279. doi: 10.1021/bi00399a038. [DOI] [PubMed] [Google Scholar]
- Estreicher A., Mühlhauser J., Carpentier J. L., Orci L., Vassalli J. D. The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J Cell Biol. 1990 Aug;111(2):783–792. doi: 10.1083/jcb.111.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frist S. T., Taylor H. A., Jr, Kirk K. A., Grammer J. R., Li X. N., Grenett H. E., Booyse F. M. Expression of PAI-1, t-PA and u-PA in cultured human umbilical vein endothelial cells derived from racial groups. Thromb Res. 1995 Feb 1;77(3):279–290. doi: 10.1016/0049-3848(95)91615-r. [DOI] [PubMed] [Google Scholar]
- Gyetko M. R., Sitrin R. G., Fuller J. A., Todd R. F., 3rd, Petty H., Standiford T. J. Function of the urokinase receptor (CD87) in neutrophil chemotaxis. J Leukoc Biol. 1995 Nov;58(5):533–538. doi: 10.1002/jlb.58.5.533. [DOI] [PubMed] [Google Scholar]
- Gyetko M. R., Todd R. F., 3rd, Wilkinson C. C., Sitrin R. G. The urokinase receptor is required for human monocyte chemotaxis in vitro. J Clin Invest. 1994 Apr;93(4):1380–1387. doi: 10.1172/JCI117114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann G. E., Glatstein I., Schatz F., Heller D., Deligdisch L. Immunohistochemical localization of urokinase-type plasminogen activator and the plasminogen activator inhibitors 1 and 2 in early human implantation sites. Am J Obstet Gynecol. 1994 Feb;170(2):671–676. doi: 10.1016/s0002-9378(94)70246-2. [DOI] [PubMed] [Google Scholar]
- Huffnagle G. B., Yates J. L., Lipscomb M. F. Immunity to a pulmonary Cryptococcus neoformans infection requires both CD4+ and CD8+ T cells. J Exp Med. 1991 Apr 1;173(4):793–800. doi: 10.1084/jem.173.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huffnagle G. B., Yates J. L., Lipscomb M. F. T cell-mediated immunity in the lung: a Cryptococcus neoformans pulmonary infection model using SCID and athymic nude mice. Infect Immun. 1991 Apr;59(4):1423–1433. doi: 10.1128/iai.59.4.1423-1433.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirchheimer J. C., Remold H. G. Endogenous receptor-bound urokinase mediates tissue invasion of human monocytes. J Immunol. 1989 Oct 15;143(8):2634–2639. [PubMed] [Google Scholar]
- Lavnikova N., Prokhorova S., Helyar L., Laskin D. L. Isolation and partial characterization of subpopulations of alveolar macrophages, granulocytes, and highly enriched interstitial macrophages from rat lung. Am J Respir Cell Mol Biol. 1993 Apr;8(4):384–392. doi: 10.1165/ajrcmb/8.4.384. [DOI] [PubMed] [Google Scholar]
- Matsushima K., Taguchi M., Kovacs E. J., Young H. A., Oppenheim J. J. Intracellular localization of human monocyte associated interleukin 1 (IL 1) activity and release of biologically active IL 1 from monocytes by trypsin and plasmin. J Immunol. 1986 Apr 15;136(8):2883–2891. [PubMed] [Google Scholar]
- Mignatti P., Robbins E., Rifkin D. B. Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell. 1986 Nov 21;47(4):487–498. doi: 10.1016/0092-8674(86)90613-6. [DOI] [PubMed] [Google Scholar]
- Miller M. D., Krangel M. S. Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit Rev Immunol. 1992;12(1-2):17–46. [PubMed] [Google Scholar]
- Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mody C. H., Lipscomb M. F., Street N. E., Toews G. B. Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J Immunol. 1990 Feb 15;144(4):1472–1477. [PubMed] [Google Scholar]
- Mody C. H., Toews G. B., Lipscomb M. F. Treatment of murine cryptococcosis with cyclosporin-A in normal and athymic mice. Am Rev Respir Dis. 1989 Jan;139(1):8–13. doi: 10.1164/ajrccm/139.1.8. [DOI] [PubMed] [Google Scholar]
- Murphy G., Docherty A. J. The matrix metalloproteinases and their inhibitors. Am J Respir Cell Mol Biol. 1992 Aug;7(2):120–125. doi: 10.1165/ajrcmb/7.2.120. [DOI] [PubMed] [Google Scholar]
- Negri M., Sheiban I., Arigliano P. L., Tonni S., Montresor G., Carlini S., Manzato F. Interrelation between angiographic severity of coronary artery disease and plasma levels of insulin, C-peptide and plasminogen activator inhibitor-1. Am J Cardiol. 1993 Aug 15;72(5):397–401. doi: 10.1016/0002-9149(93)91129-6. [DOI] [PubMed] [Google Scholar]
- Nykjaer A., Møller B., Todd R. F., 3rd, Christensen T., Andreasen P. A., Gliemann J., Petersen C. M. Urokinase receptor. An activation antigen in human T lymphocytes. J Immunol. 1994 Jan 15;152(2):505–516. [PubMed] [Google Scholar]
- Nykjaer A., Petersen C. M., Christensen E. I., Davidsen O., Gliemann J. Urokinase receptors in human monocytes. Biochim Biophys Acta. 1990 May 22;1052(3):399–407. doi: 10.1016/0167-4889(90)90149-8. [DOI] [PubMed] [Google Scholar]
- Ossowski L. Plasminogen activator dependent pathways in the dissemination of human tumor cells in the chick embryo. Cell. 1988 Feb 12;52(3):321–328. doi: 10.1016/s0092-8674(88)80025-4. [DOI] [PubMed] [Google Scholar]
- Ossowski L., Russo-Payne H., Wilson E. L. Inhibition of urokinase-type plasminogen activator by antibodies: the effect on dissemination of a human tumor in the nude mouse. Cancer Res. 1991 Jan 1;51(1):274–281. [PubMed] [Google Scholar]
- Plesner T., Ploug M., Ellis V., Rønne E., Høyer-Hansen G., Wittrup M., Pedersen T. L., Tscherning T., Danø K., Hansen N. E. The receptor for urokinase-type plasminogen activator and urokinase is translocated from two distinct intracellular compartments to the plasma membrane on stimulation of human neutrophils. Blood. 1994 Feb 1;83(3):808–815. [PubMed] [Google Scholar]
- Quax P. H., van Muijen G. N., Weening-Verhoeff E. J., Lund L. R., Danø K., Ruiter D. J., Verheijen J. H. Metastatic behavior of human melanoma cell lines in nude mice correlates with urokinase-type plasminogen activator, its type-1 inhibitor, and urokinase-mediated matrix degradation. J Cell Biol. 1991 Oct;115(1):191–199. doi: 10.1083/jcb.115.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reich J. M., Johnson R. E. Mycobacterium avium complex pulmonary disease. Incidence, presentation, and response to therapy in a community setting. Am Rev Respir Dis. 1991 Jun;143(6):1381–1385. doi: 10.1164/ajrccm/143.6.1381. [DOI] [PubMed] [Google Scholar]
- Saksela O., Rifkin D. B. Cell-associated plasminogen activation: regulation and physiological functions. Annu Rev Cell Biol. 1988;4:93–126. doi: 10.1146/annurev.cb.04.110188.000521. [DOI] [PubMed] [Google Scholar]
- Senior R. M., Shapiro S. D. Introduction: the matrix metalloproteinase family. Am J Respir Cell Mol Biol. 1992 Aug;7(2):119–119. doi: 10.1165/ajrcmb/7.2.119. [DOI] [PubMed] [Google Scholar]
- Sitrin R. G., Shollenberger S. B., Strieter R. M., Gyetko M. R. Endogenously produced urokinase amplifies tumor necrosis factor-alpha secretion by THP-1 mononuclear phagocytes. J Leukoc Biol. 1996 Feb;59(2):302–311. doi: 10.1002/jlb.59.2.302. [DOI] [PubMed] [Google Scholar]
- Tsuboi R., Rifkin D. B. Bimodal relationship between invasion of the amniotic membrane and plasminogen activator activity. Int J Cancer. 1990 Jul 15;46(1):56–60. doi: 10.1002/ijc.2910460112. [DOI] [PubMed] [Google Scholar]
- Turka L. A., Goodman R. E., Rutkowski J. L., Sima A. A., Merry A., Mitra R. S., Wrone-Smith T., Toews G., Strieter R. M., Nickoloff B. J. Interleukin 12: a potential link between nerve cells and the immune response in inflammatory disorders. Mol Med. 1995 Sep;1(6):690–699. [PMC free article] [PubMed] [Google Scholar]
- Vassalli J. D., Sappino A. P., Belin D. The plasminogen activator/plasmin system. J Clin Invest. 1991 Oct;88(4):1067–1072. doi: 10.1172/JCI115405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vecchiarelli A., Dottorini M., Pietrella D., Monari C., Retini C., Todisco T., Bistoni F. Role of human alveolar macrophages as antigen-presenting cells in Cryptococcus neoformans infection. Am J Respir Cell Mol Biol. 1994 Aug;11(2):130–137. doi: 10.1165/ajrcmb.11.2.8049074. [DOI] [PubMed] [Google Scholar]
- Vecchiarelli A., Pietrella D., Dottorini M., Monari C., Retini C., Todisco T., Bistoni F. Encapsulation of Cryptococcus neoformans regulates fungicidal activity and the antigen presentation process in human alveolar macrophages. Clin Exp Immunol. 1994 Nov;98(2):217–223. doi: 10.1111/j.1365-2249.1994.tb06128.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welgus H. G., Connolly N. L., Senior R. M. 12-o-Tetradecanoyl-phorbol-13-acetate-differentiated U937 cells express a macrophage-like profile of neutral proteinases. High levels of secreted collagenase and collagenase inhibitor accompany low levels of intracellular elastase and cathepsin G. J Clin Invest. 1986 May;77(5):1675–1681. doi: 10.1172/JCI112485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson D. E., Bennett J. E., Bailey J. W. Serologic grouping of Cryptococcus neoformans. Proc Soc Exp Biol Med. 1968 Mar;127(3):820–823. doi: 10.3181/00379727-127-32812. [DOI] [PubMed] [Google Scholar]
- Zini J. M., Murray S. C., Graham C. H., Lala P. K., Karikó K., Barnathan E. S., Mazar A., Henkin J., Cines D. B., McCrae K. R. Characterization of urokinase receptor expression by human placental trophoblasts. Blood. 1992 Jun 1;79(11):2917–2929. [PubMed] [Google Scholar]