Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Apr 15;97(8):1852–1859. doi: 10.1172/JCI118615

Leukemia inhibitory factor (LIF) stimulates proopiomelanocortin (POMC) expression in a corticotroph cell line. Role of STAT pathway.

D W Ray 1, S G Ren 1, S Melmed 1
PMCID: PMC507253  PMID: 8621768

Abstract

We recently described the expression of leukemia inhibitory factor (LIF) in human fetal and murine corticotrophs. LIF and the related cytokine oncostatin M induced basal, and corticotropin-releasing hormone (CRH) induced proopiomelanocortin (POMC) mRNA and ACTH secretion in AtT20 cells. LIF signaling and regulation of POMC gene transcription were therefore tested. Dexamethasone inhibited both basal- and LIF-induced ACTH secretion (P<0.05) and LIF induction of ACTH was also attenuated by immuneutralization of either the LIF receptor (35%, P<0.05) or the gp130 affinity converter (41%, P<0.05). These antisera also attenuated basal ACTH secretion in the absence of added ligand (P<0.05). To examine intrapituitary LIF signaling, phosphorylation of post-receptor substrates was measured. 1 nM LIF rapidly induced tyrosyl phosphorylation of STAT 1 and STAT 3 proteins, as well as tyrosyl phosphorylation of a 115-kD protein, coimmunoprecipitated with STAT 1. The transfected rat POMC promoter -706/+64, fused to the luciferase reporter gene, was induced by LIF, which exerted strong (18-fold) synergy with CRH. Deletion of the major CRH responsive region in POMC (-323/-166) abolished CRH induction of transcription and severely limited LIF synergy. Although 8 bromo cAMP or forskolin modestly enhanced POMC transcription (2.8-fold), LIF markedly potentiated (7.4-fold) these cAMP activators. These results demonstrate that corticotroph LIF action is receptor mediated and involves activation of STAT signaling pathways. LIF potently synergizes with both CRH and cAMP induction of POMC transcription. This novel intrapituitary signaling mechanism may mediate a neuroimmune pituitary interface.

Full Text

The Full Text of this article is available as a PDF (248.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akira S., Nishio Y., Inoue M., Wang X. J., Wei S., Matsusaka T., Yoshida K., Sudo T., Naruto M., Kishimoto T. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994 Apr 8;77(1):63–71. doi: 10.1016/0092-8674(94)90235-6. [DOI] [PubMed] [Google Scholar]
  2. Akita S., Webster J., Ren S. G., Takino H., Said J., Zand O., Melmed S. Human and murine pituitary expression of leukemia inhibitory factor. Novel intrapituitary regulation of adrenocorticotropin hormone synthesis and secretion. J Clin Invest. 1995 Mar;95(3):1288–1298. doi: 10.1172/JCI117779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arzt E., Stelzer G., Renner U., Lange M., Müller O. A., Stalla G. K. Interleukin-2 and interleukin-2 receptor expression in human corticotrophic adenoma and murine pituitary cell cultures. J Clin Invest. 1992 Nov;90(5):1944–1951. doi: 10.1172/JCI116072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernton E. W., Beach J. E., Holaday J. W., Smallridge R. C., Fein H. G. Release of multiple hormones by a direct action of interleukin-1 on pituitary cells. Science. 1987 Oct 23;238(4826):519–521. doi: 10.1126/science.2821620. [DOI] [PubMed] [Google Scholar]
  5. Boutillier A. L., Monnier D., Lorang D., Lundblad J. R., Roberts J. L., Loeffler J. P. Corticotropin-releasing hormone stimulates proopiomelanocortin transcription by cFos-dependent and -independent pathways: characterization of an AP1 site in exon 1. Mol Endocrinol. 1995 Jun;9(6):745–755. doi: 10.1210/mend.9.6.8592520. [DOI] [PubMed] [Google Scholar]
  6. Boutillier A. L., Sassone-Corsi P., Loeffler J. P. The protooncogene c-fos is induced by corticotropin-releasing factor and stimulates proopiomelanocortin gene transcription in pituitary cells. Mol Endocrinol. 1991 Sep;5(9):1301–1310. doi: 10.1210/mend-5-9-1301. [DOI] [PubMed] [Google Scholar]
  7. Campbell G. S., Meyer D. J., Raz R., Levy D. E., Schwartz J., Carter-Su C. Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. J Biol Chem. 1995 Feb 24;270(8):3974–3979. doi: 10.1074/jbc.270.8.3974. [DOI] [PubMed] [Google Scholar]
  8. Chrousos G. P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med. 1995 May 18;332(20):1351–1362. doi: 10.1056/NEJM199505183322008. [DOI] [PubMed] [Google Scholar]
  9. Clark A. J., Stewart M. F., Lavender P. M., Farrell W., Crosby S. R., Rees L. H., White A. Defective glucocorticoid regulation of proopiomelanocortin gene expression and peptide secretion in a small cell lung cancer cell line. J Clin Endocrinol Metab. 1990 Feb;70(2):485–490. doi: 10.1210/jcem-70-2-485. [DOI] [PubMed] [Google Scholar]
  10. Darnell J. E., Jr, Kerr I. M., Stark G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994 Jun 3;264(5164):1415–1421. doi: 10.1126/science.8197455. [DOI] [PubMed] [Google Scholar]
  11. David M., Petricoin E. F., 3rd, Igarashi K., Feldman G. M., Finbloom D. S., Larner A. C. Prolactin activates the interferon-regulated p91 transcription factor and the Jak2 kinase by tyrosine phosphorylation. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7174–7178. doi: 10.1073/pnas.91.15.7174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davis S., Aldrich T. H., Stahl N., Pan L., Taga T., Kishimoto T., Ip N. Y., Yancopoulos G. D. LIFR beta and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science. 1993 Jun 18;260(5115):1805–1808. doi: 10.1126/science.8390097. [DOI] [PubMed] [Google Scholar]
  13. Davis S., Aldrich T. H., Valenzuela D. M., Wong V. V., Furth M. E., Squinto S. P., Yancopoulos G. D. The receptor for ciliary neurotrophic factor. Science. 1991 Jul 5;253(5015):59–63. doi: 10.1126/science.1648265. [DOI] [PubMed] [Google Scholar]
  14. Davis S., Yancopoulos G. D. The molecular biology of the CNTF receptor. Curr Opin Cell Biol. 1993 Apr;5(2):281–285. doi: 10.1016/0955-0674(93)90117-9. [DOI] [PubMed] [Google Scholar]
  15. Ferrara N., Winer J., Henzel W. J. Pituitary follicular cells secrete an inhibitor of aortic endothelial cell growth: identification as leukemia inhibitory factor. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):698–702. doi: 10.1073/pnas.89.2.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fu X. Y. A transcription factor with SH2 and SH3 domains is directly activated by an interferon alpha-induced cytoplasmic protein tyrosine kinase(s). Cell. 1992 Jul 24;70(2):323–335. doi: 10.1016/0092-8674(92)90106-m. [DOI] [PubMed] [Google Scholar]
  17. Gearing D. P., Comeau M. R., Friend D. J., Gimpel S. D., Thut C. J., McGourty J., Brasher K. K., King J. A., Gillis S., Mosley B. The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science. 1992 Mar 13;255(5050):1434–1437. doi: 10.1126/science.1542794. [DOI] [PubMed] [Google Scholar]
  18. Gearing D. P., Thut C. J., VandeBos T., Gimpel S. D., Delaney P. B., King J., Price V., Cosman D., Beckmann M. P. Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J. 1991 Oct;10(10):2839–2848. doi: 10.1002/j.1460-2075.1991.tb07833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gronowski A. M., Zhong Z., Wen Z., Thomas M. J., Darnell J. E., Jr, Rotwein P. In vivo growth hormone treatment rapidly stimulates the tyrosine phosphorylation and activation of Stat3. Mol Endocrinol. 1995 Feb;9(2):171–177. doi: 10.1210/mend.9.2.7776967. [DOI] [PubMed] [Google Scholar]
  20. Harbuz M. S., Rees R. G., Eckland D., Jessop D. S., Brewerton D., Lightman S. L. Paradoxical responses of hypothalamic corticotropin-releasing factor (CRF) messenger ribonucleic acid (mRNA) and CRF-41 peptide and adenohypophysial proopiomelanocortin mRNA during chronic inflammatory stress. Endocrinology. 1992 Mar;130(3):1394–1400. doi: 10.1210/endo.130.3.1537299. [DOI] [PubMed] [Google Scholar]
  21. Igarashi K., David M., Finbloom D. S., Larner A. C. In vitro activation of the transcription factor gamma interferon activation factor by gamma interferon: evidence for a tyrosine phosphatase/kinase signaling cascade. Mol Cell Biol. 1993 Mar;13(3):1634–1640. doi: 10.1128/mcb.13.3.1634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Igarashi K., Garotta G., Ozmen L., Ziemiecki A., Wilks A. F., Harpur A. G., Larner A. C., Finbloom D. S. Interferon-gamma induces tyrosine phosphorylation of interferon-gamma receptor and regulated association of protein tyrosine kinases, Jak1 and Jak2, with its receptor. J Biol Chem. 1994 May 20;269(20):14333–14336. [PubMed] [Google Scholar]
  23. Jin W. D., Boutillier A. L., Glucksman M. J., Salton S. R., Loeffler J. P., Roberts J. L. Characterization of a corticotropin-releasing hormone-responsive element in the rat proopiomelanocortin gene promoter and molecular cloning of its binding protein. Mol Endocrinol. 1994 Oct;8(10):1377–1388. doi: 10.1210/mend.8.10.7854355. [DOI] [PubMed] [Google Scholar]
  24. Jones T. H., Justice S., Price A., Chapman K. Interleukin-6 secreting human pituitary adenomas in vitro. J Clin Endocrinol Metab. 1991 Jul;73(1):207–209. doi: 10.1210/jcem-73-1-207. [DOI] [PubMed] [Google Scholar]
  25. Kishimoto T., Taga T., Akira S. Cytokine signal transduction. Cell. 1994 Jan 28;76(2):253–262. doi: 10.1016/0092-8674(94)90333-6. [DOI] [PubMed] [Google Scholar]
  26. Koenig J. I., Snow K., Clark B. D., Toni R., Cannon J. G., Shaw A. R., Dinarello C. A., Reichlin S., Lee S. L., Lechan R. M. Intrinsic pituitary interleukin-1 beta is induced by bacterial lipopolysaccharide. Endocrinology. 1990 Jun;126(6):3053–3058. doi: 10.1210/endo-126-6-3053. [DOI] [PubMed] [Google Scholar]
  27. Lütticken C., Wegenka U. M., Yuan J., Buschmann J., Schindler C., Ziemiecki A., Harpur A. G., Wilks A. F., Yasukawa K., Taga T. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science. 1994 Jan 7;263(5143):89–92. doi: 10.1126/science.8272872. [DOI] [PubMed] [Google Scholar]
  28. Mastorakos G., Weber J. S., Magiakou M. A., Gunn H., Chrousos G. P. Hypothalamic-pituitary-adrenal axis activation and stimulation of systemic vasopressin secretion by recombinant interleukin-6 in humans: potential implications for the syndrome of inappropriate vasopressin secretion. J Clin Endocrinol Metab. 1994 Oct;79(4):934–939. doi: 10.1210/jcem.79.4.7962300. [DOI] [PubMed] [Google Scholar]
  29. Pennica D., Shaw K. J., Swanson T. A., Moore M. W., Shelton D. L., Zioncheck K. A., Rosenthal A., Taga T., Paoni N. F., Wood W. I. Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J Biol Chem. 1995 May 5;270(18):10915–10922. doi: 10.1074/jbc.270.18.10915. [DOI] [PubMed] [Google Scholar]
  30. Riegel A. T., Lu Y., Remenick J., Wolford R. G., Berard D. S., Hager G. L. Proopiomelanocortin gene promoter elements required for constitutive and glucocorticoid-repressed transcription. Mol Endocrinol. 1991 Dec;5(12):1973–1982. doi: 10.1210/mend-5-12-1973. [DOI] [PubMed] [Google Scholar]
  31. Schindler C., Fu X. Y., Improta T., Aebersold R., Darnell J. E., Jr Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7836–7839. doi: 10.1073/pnas.89.16.7836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shuai K., Schindler C., Prezioso V. R., Darnell J. E., Jr Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science. 1992 Dec 11;258(5089):1808–1812. doi: 10.1126/science.1281555. [DOI] [PubMed] [Google Scholar]
  33. Shuai K., Stark G. R., Kerr I. M., Darnell J. E., Jr A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science. 1993 Sep 24;261(5129):1744–1746. doi: 10.1126/science.7690989. [DOI] [PubMed] [Google Scholar]
  34. Silva C. M., Lu H., Weber M. J., Thorner M. O. Differential tyrosine phosphorylation of JAK1, JAK2, and STAT1 by growth hormone and interferon-gamma in IM-9 cells. J Biol Chem. 1994 Nov 4;269(44):27532–27539. [PubMed] [Google Scholar]
  35. Spangelo B. L., Judd A. M., Isakson P. C., MacLeod R. M. Interleukin-6 stimulates anterior pituitary hormone release in vitro. Endocrinology. 1989 Jul;125(1):575–577. doi: 10.1210/endo-125-1-575. [DOI] [PubMed] [Google Scholar]
  36. Stahl N., Boulton T. G., Farruggella T., Ip N. Y., Davis S., Witthuhn B. A., Quelle F. W., Silvennoinen O., Barbieri G., Pellegrini S. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science. 1994 Jan 7;263(5143):92–95. doi: 10.1126/science.8272873. [DOI] [PubMed] [Google Scholar]
  37. Stahl N., Yancopoulos G. D. The alphas, betas, and kinases of cytokine receptor complexes. Cell. 1993 Aug 27;74(4):587–590. doi: 10.1016/0092-8674(93)90506-l. [DOI] [PubMed] [Google Scholar]
  38. Suda T., Tozawa F., Ushiyama T., Tomori N., Sumitomo T., Nakagami Y., Yamada M., Demura H., Shizume K. Effects of protein kinase-C-related adrenocorticotropin secretagogues and interleukin-1 on proopiomelanocortin gene expression in rat anterior pituitary cells. Endocrinology. 1989 Mar;124(3):1444–1449. doi: 10.1210/endo-124-3-1444. [DOI] [PubMed] [Google Scholar]
  39. Witthuhn B. A., Quelle F. W., Silvennoinen O., Yi T., Tang B., Miura O., Ihle J. N. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993 Jul 30;74(2):227–236. doi: 10.1016/0092-8674(93)90414-l. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES