Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Apr 15;97(8):1884–1889. doi: 10.1172/JCI118619

Urea signaling in cultured murine inner medullary collecting duct (mIMCD3) cells involves protein kinase C, inositol 1,4,5-trisphosphate (IP3), and a putative receptor tyrosine kinase.

D M Cohen 1, S R Gullans 1, W W Chin 1
PMCID: PMC507257  PMID: 8621772

Abstract

Urea, in concentrations unique to the renal medulla, increases transcription and protein expression of several immediate-early genes (IEGs) including the zinc finger-containing transcription factor, Egr-1. In the present study, the proximal 1.2 kb of the murine Egr-1 5' -flanking sequence conferred urea-responsiveness to a heterologous luciferase reporter gene when transiently transfected into renal medullary mIMCD3 cells,and this effect was comparable with that of the extremely potent immediate-early gene inducer, O-tetradecanoylphorbol 13-acetate (TPA). Urea inducibility of Egr-1 expression was protein kinase C (PKC)-dependent because staurosporine and calphostin C abrogated the urea effect, and down-regulation of PHC through chronic TPa treatment inhibited both urea-inducible Egr-1 protein expression and gene transcription. In addition, hyperosmotic urea increased inositol 1,4,5-trisphosphate (IP3) release from mIMCD3 cells and induced tyrosine phosphorylation of the receptor tyrosine kinase-specific phospholipase C (PLC) isoform, PLC-gamma. Importantly, urea-inducible Egr-1 expression was strongly genistein-sensitive, to a much greater extent than the comparable TPA-inducible Egr-1 expression. These data suggest that urea-inducible Egr-1 expression is a consequence of sequential PLC-gamma activation, IP3 release, and PKC activation. Urea-inducible PLC-gamma activation, in conjunction with the genistein-sensitivity of urea-inducible Egr-1 expression suggest the possibility of a cell surface or cytoplasmic urea-sensing receptor tyrosine kinase.

Full Text

The Full Text of this article is available as a PDF (250.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandropoulos K., Qureshi S. A., Bruder J. T., Rapp U., Foster D. A. The induction of Egr-1 expression by v-Fps is via a protein kinase C-independent intracellular signal that is sequentially dependent upon HaRas and Raf-1. Cell Growth Differ. 1992 Oct;3(10):731–737. [PubMed] [Google Scholar]
  2. Brewster J. L., de Valoir T., Dwyer N. D., Winter E., Gustin M. C. An osmosensing signal transduction pathway in yeast. Science. 1993 Mar 19;259(5102):1760–1763. doi: 10.1126/science.7681220. [DOI] [PubMed] [Google Scholar]
  3. Brown E. M., Gamba G., Riccardi D., Lombardi M., Butters R., Kifor O., Sun A., Hediger M. A., Lytton J., Hebert S. C. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993 Dec 9;366(6455):575–580. doi: 10.1038/366575a0. [DOI] [PubMed] [Google Scholar]
  4. Cao X. M., Guy G. R., Sukhatme V. P., Tan Y. H. Regulation of the Egr-1 gene by tumor necrosis factor and interferons in primary human fibroblasts. J Biol Chem. 1992 Jan 15;267(2):1345–1349. [PubMed] [Google Scholar]
  5. Cao X. M., Koski R. A., Gashler A., McKiernan M., Morris C. F., Gaffney R., Hay R. V., Sukhatme V. P. Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol Cell Biol. 1990 May;10(5):1931–1939. doi: 10.1128/mcb.10.5.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cao X. M., Koski R. A., Gashler A., McKiernan M., Morris C. F., Gaffney R., Hay R. V., Sukhatme V. P. Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol Cell Biol. 1990 May;10(5):1931–1939. doi: 10.1128/mcb.10.5.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Changelian P. S., Feng P., King T. C., Milbrandt J. Structure of the NGFI-A gene and detection of upstream sequences responsible for its transcriptional induction by nerve growth factor. Proc Natl Acad Sci U S A. 1989 Jan;86(1):377–381. doi: 10.1073/pnas.86.1.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Choi H. S., Li B., Lin Z., Huang E., Liu A. Y. cAMP and cAMP-dependent protein kinase regulate the human heat shock protein 70 gene promoter activity. J Biol Chem. 1991 Jun 25;266(18):11858–11865. [PubMed] [Google Scholar]
  9. Christy B. A., Lau L. F., Nathans D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with "zinc finger" sequences. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7857–7861. doi: 10.1073/pnas.85.21.7857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Christy B., Nathans D. DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8737–8741. doi: 10.1073/pnas.86.22.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Christy B., Nathans D. Functional serum response elements upstream of the growth factor-inducible gene zif268. Mol Cell Biol. 1989 Nov;9(11):4889–4895. doi: 10.1128/mcb.9.11.4889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cohen D. M., Chin W. W., Gullans S. R. Hyperosmotic urea increases transcription and synthesis of Egr-1 in murine inner medullary collecting duct (mIMCD3) cells. J Biol Chem. 1994 Oct 14;269(41):25865–25870. [PubMed] [Google Scholar]
  13. Cohen D. M., Gullans S. R. Urea induces Egr-1 and c-fos expression in renal epithelial cells. Am J Physiol. 1993 Apr;264(4 Pt 2):F593–F600. doi: 10.1152/ajprenal.1993.264.4.F593. [DOI] [PubMed] [Google Scholar]
  14. Cohen D. M., Gullans S. R. Urea selectively induces DNA synthesis in renal epithelial cells. Am J Physiol. 1993 Apr;264(4 Pt 2):F601–F607. doi: 10.1152/ajprenal.1993.264.4.F601. [DOI] [PubMed] [Google Scholar]
  15. Cohen D. M., Wasserman J. C., Gullans S. R. Immediate early gene and HSP70 expression in hyperosmotic stress in MDCK cells. Am J Physiol. 1991 Oct;261(4 Pt 1):C594–C601. doi: 10.1152/ajpcell.1991.261.4.C594. [DOI] [PubMed] [Google Scholar]
  16. Coleman D. L., Bartiss A. H., Sukhatme V. P., Liu J., Rupprecht H. D. Lipopolysaccharide induces Egr-1 mRNA and protein in murine peritoneal macrophages. J Immunol. 1992 Nov 1;149(9):3045–3051. [PubMed] [Google Scholar]
  17. Epner D. E., Herschman H. R. Heavy metals induce expression of the TPA-inducible sequence (TIS) genes. J Cell Physiol. 1991 Jul;148(1):68–74. doi: 10.1002/jcp.1041480109. [DOI] [PubMed] [Google Scholar]
  18. Garcia-Perez A., Burg M. B. Renal medullary organic osmolytes. Physiol Rev. 1991 Oct;71(4):1081–1115. doi: 10.1152/physrev.1991.71.4.1081. [DOI] [PubMed] [Google Scholar]
  19. Hallahan D. E., Sukhatme V. P., Sherman M. L., Virudachalam S., Kufe D., Weichselbaum R. R. Protein kinase C mediates x-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2156–2160. doi: 10.1073/pnas.88.6.2156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Itoh T., Yamauchi A., Miyai A., Yokoyama K., Kamada T., Ueda N., Fujiwara Y. Mitogen-activated protein kinase and its activator are regulated by hypertonic stress in Madin-Darby canine kidney cells. J Clin Invest. 1994 Jun;93(6):2387–2392. doi: 10.1172/JCI117245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jamieson G. A., Jr, Mayforth R. D., Villereal M. L., Sukhatme V. P. Multiple intracellular pathways induce expression of a zinc-finger encoding gene (EGR1): relationship to activation of the Na/H exchanger. J Cell Physiol. 1989 May;139(2):262–268. doi: 10.1002/jcp.1041390207. [DOI] [PubMed] [Google Scholar]
  22. Janssen-Timmen U., Lemaire P., Mattéi M. G., Revelant O., Charnay P. Structure, chromosome mapping and regulation of the mouse zinc-finger gene Krox-24; evidence for a common regulatory pathway for immediate-early serum-response genes. Gene. 1989 Aug 15;80(2):325–336. doi: 10.1016/0378-1119(89)90296-5. [DOI] [PubMed] [Google Scholar]
  23. Kim U. H., Kim J. W., Rhee S. G. Phosphorylation of phospholipase C-gamma by cAMP-dependent protein kinase. J Biol Chem. 1989 Dec 5;264(34):20167–20170. [PubMed] [Google Scholar]
  24. Lee S. B., Rhee S. G. Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr Opin Cell Biol. 1995 Apr;7(2):183–189. doi: 10.1016/0955-0674(95)80026-3. [DOI] [PubMed] [Google Scholar]
  25. Lemaire P., Revelant O., Bravo R., Charnay P. Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4691–4695. doi: 10.1073/pnas.85.13.4691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lim R. W., Varnum B. C., Herschman H. R. Cloning of tetradecanoyl phorbol ester-induced 'primary response' sequences and their expression in density-arrested Swiss 3T3 cells and a TPA non-proliferative variant. Oncogene. 1987;1(3):263–270. [PubMed] [Google Scholar]
  27. Maeda T., Takekawa M., Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science. 1995 Jul 28;269(5223):554–558. doi: 10.1126/science.7624781. [DOI] [PubMed] [Google Scholar]
  28. Maeda T., Wurgler-Murphy S. M., Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994 May 19;369(6477):242–245. doi: 10.1038/369242a0. [DOI] [PubMed] [Google Scholar]
  29. Marshall C. J. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev. 1994 Feb;4(1):82–89. doi: 10.1016/0959-437x(94)90095-7. [DOI] [PubMed] [Google Scholar]
  30. Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science. 1987 Nov 6;238(4828):797–799. doi: 10.1126/science.3672127. [DOI] [PubMed] [Google Scholar]
  31. Nordeen S. K. Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques. 1988 May;6(5):454–458. [PubMed] [Google Scholar]
  32. Park D. J., Rho H. W., Rhee S. G. CD3 stimulation causes phosphorylation of phospholipase C-gamma 1 on serine and tyrosine residues in a human T-cell line. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5453–5456. doi: 10.1073/pnas.88.12.5453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Qureshi S. A., Cao X. M., Sukhatme V. P., Foster D. A. v-Src activates mitogen-responsive transcription factor Egr-1 via serum response elements. J Biol Chem. 1991 Jun 15;266(17):10802–10806. [PubMed] [Google Scholar]
  34. Rauchman M. I., Nigam S. K., Delpire E., Gullans S. R. An osmotically tolerant inner medullary collecting duct cell line from an SV40 transgenic mouse. Am J Physiol. 1993 Sep;265(3 Pt 2):F416–F424. doi: 10.1152/ajprenal.1993.265.3.F416. [DOI] [PubMed] [Google Scholar]
  35. Rupprecht H. D., Dann P., Sukhatme V. P., Sterzel R. B., Coleman D. L. Effect of vasoactive agents on induction of Egr-1 in rat mesangial cells: correlation with mitogenicity. Am J Physiol. 1992 Oct;263(4 Pt 2):F623–F636. doi: 10.1152/ajprenal.1992.263.4.F623. [DOI] [PubMed] [Google Scholar]
  36. Seyfert V. L., McMahon S., Glenn W., Cao X. M., Sukhatme V. P., Monroe J. G. Egr-1 expression in surface Ig-mediated B cell activation. Kinetics and association with protein kinase C activation. J Immunol. 1990 Dec 1;145(11):3647–3653. [PubMed] [Google Scholar]
  37. Smardo F. L., Jr, Burg M. B., Garcia-Perez A. Kidney aldose reductase gene transcription is osmotically regulated. Am J Physiol. 1992 Mar;262(3 Pt 1):C776–C782. doi: 10.1152/ajpcell.1992.262.3.C776. [DOI] [PubMed] [Google Scholar]
  38. Stumpo D. J., Blackshear P. J. Cellular expression of mutant insulin receptors interferes with the rapid transcriptional response to both insulin and insulin-like growth factor I. J Biol Chem. 1991 Jan 5;266(1):455–460. [PubMed] [Google Scholar]
  39. Sukhatme V. P. Early transcriptional events in cell growth: the Egr family. J Am Soc Nephrol. 1990 Dec;1(6):859–866. doi: 10.1681/ASN.V16859. [DOI] [PubMed] [Google Scholar]
  40. Sukhatme V. P., Kartha S., Toback F. G., Taub R., Hoover R. G., Tsai-Morris C. H. A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res. 1987 Sep-Oct;1(4):343–355. [PubMed] [Google Scholar]
  41. Terada Y., Tomita K., Homma M. K., Nonoguchi H., Yang T., Yamada T., Yuasa Y., Krebs E. G., Sasaki S., Marumo F. Sequential activation of Raf-1 kinase, mitogen-activated protein (MAP) kinase kinase, MAP kinase, and S6 kinase by hyperosmolality in renal cells. J Biol Chem. 1994 Dec 9;269(49):31296–31301. [PubMed] [Google Scholar]
  42. Tsai-Morris C. H., Cao X. M., Sukhatme V. P. 5' flanking sequence and genomic structure of Egr-1, a murine mitogen inducible zinc finger encoding gene. Nucleic Acids Res. 1988 Sep 26;16(18):8835–8846. doi: 10.1093/nar/16.18.8835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Uchida S., Yamauchi A., Preston A. S., Kwon H. M., Handler J. S. Medium tonicity regulates expression of the Na(+)- and Cl(-)-dependent betaine transporter in Madin-Darby canine kidney cells by increasing transcription of the transporter gene. J Clin Invest. 1993 Apr;91(4):1604–1607. doi: 10.1172/JCI116367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yamauchi A., Uchida S., Preston A. S., Kwon H. M., Handler J. S. Hypertonicity stimulates transcription of gene for Na(+)-myo-inositol cotransporter in MDCK cells. Am J Physiol. 1993 Jan;264(1 Pt 2):F20–F23. doi: 10.1152/ajprenal.1993.264.1.F20. [DOI] [PubMed] [Google Scholar]
  45. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES