Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Apr 15;97(8):1908–1915. doi: 10.1172/JCI118622

Nitric oxide synthase (NOS3) and contractile responsiveness to adrenergic and cholinergic agonists in the heart. Regulation of NOS3 transcription in vitro and in vivo by cyclic adenosine monophosphate in rat cardiac myocytes.

L Belhassen 1, R A Kelly 1, T W Smith 1, J L Balligand 1
PMCID: PMC507260  PMID: 8621775

Abstract

Cardiac myocytes express the nitric oxide synthase isoform originally identified in constitutive nitric oxide synthase cells (NOS3), which mediates the attenuation by muscarinic cholinergic agonists of beta-adrenergic stimulation of L-type calcium current and contractility in these cells. However, calcium current and contractility in these cells. However, the reciprocal regulation of NOS3 activity in myocytes by agents that elevate cAMP has not been reported. In this study, we show that NOS3 and mRNA and protein levels in cardiac myocytes are reduced both in vitro after treatment with cAMP elevating drugs, and in vivo after 3 d of treatment with milrinone, a type III cAMP phosphodiesterase inhibitor. This effect on NOS3 activity by cAMP is cell type specific because treatment of cardiac microvascular endothelial cells in vitro or in vivo did not decrease NOS3 mRNA or protein in these cells. NOS3 downregulation in myocytes appeared to be at the level of transcription since there was no modification of NOS3 mRNA half-life by agents that increase intracellular cAMP. To determine the functional effects of NOS3 downregulation, we examined the contractile responsiveness of isolated electrically paced ventricular myocytes, isolated from animals that had been treated in vivo with milrinone, to the beta-adrenergic agonist isoproterenol and the muscarinic cholinergic agonist carbamylcholine. There was no difference in baseline contractile function in cells that had been pretreated with cAMP elevating agents compared to controls, but cells exposed to milrinone in vivo exhibited an accentuation in their contractile responsiveness to isoproterenol compared to controls and a loss of responsiveness to carbamylcholine. Downregulation of myocyte NOS3 by sustained elevation of cAMP may have important implications for the regulation of myocardial contractile state by the autonomic nervous system.

Full Text

The Full Text of this article is available as a PDF (272.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balligand J. L., Kelly R. A., Marsden P. A., Smith T. W., Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):347–351. doi: 10.1073/pnas.90.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balligand J. L., Kobzik L., Han X., Kaye D. M., Belhassen L., O'Hara D. S., Kelly R. A., Smith T. W., Michel T. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem. 1995 Jun 16;270(24):14582–14586. doi: 10.1074/jbc.270.24.14582. [DOI] [PubMed] [Google Scholar]
  3. Balligand J. L., Ungureanu-Longrois D., Simmons W. W., Kobzik L., Lowenstein C. J., Lamas S., Kelly R. A., Smith T. W., Michel T. Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-1 beta and IFN-gamma. Am J Physiol. 1995 Mar;268(3 Pt 2):H1293–H1303. doi: 10.1152/ajpheart.1995.268.3.H1293. [DOI] [PubMed] [Google Scholar]
  4. Balligand J. L., Ungureanu-Longrois D., Simmons W. W., Pimental D., Malinski T. A., Kapturczak M., Taha Z., Lowenstein C. J., Davidoff A. J., Kelly R. A. Cytokine-inducible nitric oxide synthase (iNOS) expression in cardiac myocytes. Characterization and regulation of iNOS expression and detection of iNOS activity in single cardiac myocytes in vitro. J Biol Chem. 1994 Nov 4;269(44):27580–27588. [PubMed] [Google Scholar]
  5. Berger H. J., Prasad S. K., Davidoff A. J., Pimental D., Ellingsen O., Marsh J. D., Smith T. W., Kelly R. A. Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture. Am J Physiol. 1994 Jan;266(1 Pt 2):H341–H349. doi: 10.1152/ajpheart.1994.266.1.H341. [DOI] [PubMed] [Google Scholar]
  6. Bode D. C., Kanter J. R., Brunton L. L. Resolution of soluble rat cardiac phosphodiesterases by high performance liquid chromatography. Second Messengers Phosphoproteins. 1988;12(5-6):235–240. [PubMed] [Google Scholar]
  7. Brady A. J., Warren J. B., Poole-Wilson P. A., Williams T. J., Harding S. E. Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol. 1993 Jul;265(1 Pt 2):H176–H182. doi: 10.1152/ajpheart.1993.265.1.H176. [DOI] [PubMed] [Google Scholar]
  8. Bredt D. S., Ferris C. D., Snyder S. H. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem. 1992 Jun 5;267(16):10976–10981. [PubMed] [Google Scholar]
  9. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  10. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  11. Grocott-Mason R., Anning P., Evans H., Lewis M. J., Shah A. M. Modulation of left ventricular relaxation in isolated ejecting heart by endogenous nitric oxide. Am J Physiol. 1994 Nov;267(5 Pt 2):H1804–H1813. doi: 10.1152/ajpheart.1994.267.5.H1804. [DOI] [PubMed] [Google Scholar]
  12. Han X., Shimoni Y., Giles W. R. An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol. 1994 Apr 15;476(2):309–314. doi: 10.1113/jphysiol.1994.sp020132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Katano Y., Endoh M. Effects of a cardiotonic quinolinone derivative Y-20487 on the isoproterenol-induced positive inotropic action and cyclic AMP accumulation in rat ventricular myocardium: comparison with rolipram, Ro 20-1724, milrinone, and isobutylmethylxanthine. J Cardiovasc Pharmacol. 1992;20(5):715–722. [PubMed] [Google Scholar]
  14. Koide M., Kawahara Y., Nakayama I., Tsuda T., Yokoyama M. Cyclic AMP-elevating agents induce an inducible type of nitric oxide synthase in cultured vascular smooth muscle cells. Synergism with the induction elicited by inflammatory cytokines. J Biol Chem. 1993 Nov 25;268(33):24959–24966. [PubMed] [Google Scholar]
  15. Lalli E., Sassone-Corsi P. Signal transduction and gene regulation: the nuclear response to cAMP. J Biol Chem. 1994 Jul 1;269(26):17359–17362. [PubMed] [Google Scholar]
  16. Lamas S., Marsden P. A., Li G. K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6348–6352. doi: 10.1073/pnas.89.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Manolopoulos V. G., Samet M. M., Lelkes P. I. Regulation of the adenylyl cyclase signaling system in various types of cultured endothelial cells. J Cell Biochem. 1995 Apr;57(4):590–598. doi: 10.1002/jcb.240570403. [DOI] [PubMed] [Google Scholar]
  18. Marsden P. A., Heng H. H., Scherer S. W., Stewart R. J., Hall A. V., Shi X. M., Tsui L. C., Schappert K. T. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem. 1993 Aug 15;268(23):17478–17488. [PubMed] [Google Scholar]
  19. Méry P. F., Pavoine C., Belhassen L., Pecker F., Fischmeister R. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem. 1993 Dec 15;268(35):26286–26295. [PubMed] [Google Scholar]
  20. Nishida K., Harrison D. G., Navas J. P., Fisher A. A., Dockery S. P., Uematsu M., Nerem R. M., Alexander R. W., Murphy T. J. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1992 Nov;90(5):2092–2096. doi: 10.1172/JCI116092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Robinson L. J., Weremowicz S., Morton C. C., Michel T. Isolation and chromosomal localization of the human endothelial nitric oxide synthase (NOS3) gene. Genomics. 1994 Jan 15;19(2):350–357. doi: 10.1006/geno.1994.1068. [DOI] [PubMed] [Google Scholar]
  22. Shahid M., Nicholson C. D. Comparison of cyclic nucleotide phosphodiesterase isoenzymes in rat and rabbit ventricular myocardium: positive inotropic and phosphodiesterase inhibitory effects of Org 30029, milrinone and rolipram. Naunyn Schmiedebergs Arch Pharmacol. 1990 Dec;342(6):698–705. doi: 10.1007/BF00175715. [DOI] [PubMed] [Google Scholar]
  23. Sweet C. S., Ludden C. T., Stabilito I. I., Emmert S. E., Heyse J. F. Beneficial effects of milrinone and enalapril on long-term survival of rats with healed myocardial infarction. Eur J Pharmacol. 1988 Feb 16;147(1):29–37. doi: 10.1016/0014-2999(88)90630-9. [DOI] [PubMed] [Google Scholar]
  24. Trautwein W., Cavalie A., Allen T. J., Shuba Y. M., Pelzer S., Pelzer D. Direct and indirect regulation of cardiac L-type calcium channels by beta-adrenoreceptor agonists. Adv Second Messenger Phosphoprotein Res. 1990;24:45–50. [PubMed] [Google Scholar]
  25. Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]
  26. Yoshizumi M., Perrella M. A., Burnett J. C., Jr, Lee M. E. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res. 1993 Jul;73(1):205–209. doi: 10.1161/01.res.73.1.205. [DOI] [PubMed] [Google Scholar]
  27. Zhang R., Min W., Sessa W. C. Functional analysis of the human endothelial nitric oxide synthase promoter. Sp1 and GATA factors are necessary for basal transcription in endothelial cells. J Biol Chem. 1995 Jun 23;270(25):15320–15326. doi: 10.1074/jbc.270.25.15320. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES