Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Apr 15;97(8):1924–1930. doi: 10.1172/JCI118624

Stromelysin-3 expression promotes tumor take in nude mice.

A C Nöel 1, O Lefebvre 1, E Maquoi 1, L VanHoorde 1, M P Chenard 1, M Mareel 1, J M Foidart 1, P Basset 1, M C Rio 1
PMCID: PMC507262  PMID: 8621777

Abstract

Stromelysin-3 (ST3) is a matrix metalloproteinase expressed in human carcinomas in ways suggesting that it may play a role in tumor progression. To test this possibility, we have performed gene transfer experiments using both anti-sense and sense ST3 expression vectors, and malignant cells either expressing (NIH 3T3 fibroblasts) or not (MCF7 epithelial cells) endogenous ST3. We have compared the ability of parental and transfected cells to cause subcutaneous tumor development in nude mice. 3T3 cells expressing anti-sense ST3 RNA showed reduced tumorigenicity, and MCF7 cells expressing mouse or human ST3 were associated with reduced tumor-free period leading to a significant increased tumor incidence(P<10(-4)). However, once established, the ST3 expressing tumors did not grow faster than those obtained with the parental MCF7 cell line. In addition, tumors obtained after sub-cutaneous injection of ST3-expressing or nonexpressing cells did not exhibit obvious histological differences, and careful examination did not reveal any local invasive tissue areas nor systemic metastases. These in vivo observations were in agreement with those obtained in vitro showing that ST3 expression did not modify proliferative nor invasive properties of transfected cells. Altogether, these results indicate that ST3 expression promotes tumor take in nude mice, presumably by favoring cancer cell survival in a tissue environment initially not permissive for tumor growth. These findings represent the first experimental evidence showing that ST3 can modulate cancer progression.

Full Text

The Full Text of this article is available as a PDF (415.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker S. J., Markowitz S., Fearon E. R., Willson J. K., Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990 Aug 24;249(4971):912–915. doi: 10.1126/science.2144057. [DOI] [PubMed] [Google Scholar]
  2. Basset P., Bellocq J. P., Wolf C., Stoll I., Hutin P., Limacher J. M., Podhajcer O. L., Chenard M. P., Rio M. C., Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature. 1990 Dec 20;348(6303):699–704. doi: 10.1038/348699a0. [DOI] [PubMed] [Google Scholar]
  3. Bernhard E. J., Gruber S. B., Muschel R. J. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4293–4297. doi: 10.1073/pnas.91.10.4293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol. 1995 Oct;7(5):728–735. doi: 10.1016/0955-0674(95)80116-2. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. DeClerck Y. A., Perez N., Shimada H., Boone T. C., Langley K. E., Taylor S. M. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res. 1992 Feb 1;52(3):701–708. [PubMed] [Google Scholar]
  7. Docherty A. J., O'Connell J., Crabbe T., Angal S., Murphy G. The matrix metalloproteinases and their natural inhibitors: prospects for treating degenerative tissue diseases. Trends Biotechnol. 1992 Jun;10(6):200–207. doi: 10.1016/0167-7799(92)90214-g. [DOI] [PubMed] [Google Scholar]
  8. Engel G., Heselmeyer K., Auer G., Bäckdahl M., Eriksson E., Linder S. Correlation between stromelysin-3 mRNA level and outcome of human breast cancer. Int J Cancer. 1994 Sep 15;58(6):830–835. doi: 10.1002/ijc.2910580614. [DOI] [PubMed] [Google Scholar]
  9. Freije J. M., Díez-Itza I., Balbín M., Sánchez L. M., Blasco R., Tolivia J., López-Otín C. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem. 1994 Jun 17;269(24):16766–16773. [PubMed] [Google Scholar]
  10. Green S., Issemann I., Sheer E. A versatile in vivo and in vitro eukaryotic expression vector for protein engineering. Nucleic Acids Res. 1988 Jan 11;16(1):369–369. doi: 10.1093/nar/16.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hendrix M. J., Seftor E. A., Seftor R. E., Fidler I. J. A simple quantitative assay for studying the invasive potential of high and low human metastatic variants. Cancer Lett. 1987 Dec;38(1-2):137–147. doi: 10.1016/0304-3835(87)90209-6. [DOI] [PubMed] [Google Scholar]
  12. Janet T., Labourdette G., Sensenbrenner M., Pettmann B. Mitogenic growth factors regulate differentially early gene mRNA expression: a study on two clones of 3T3 fibroblasts. Exp Cell Res. 1992 Feb;198(2):305–314. doi: 10.1016/0014-4827(92)90384-k. [DOI] [PubMed] [Google Scholar]
  13. Khokha R., Waterhouse P., Yagel S., Lala P. K., Overall C. M., Norton G., Denhardt D. T. Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. Science. 1989 Feb 17;243(4893):947–950. doi: 10.1126/science.2465572. [DOI] [PubMed] [Google Scholar]
  14. Lefebvre O., Régnier C., Chenard M. P., Wendling C., Chambon P., Basset P., Rio M. C. Developmental expression of mouse stromelysin-3 mRNA. Development. 1995 Apr;121(4):947–955. doi: 10.1242/dev.121.4.947. [DOI] [PubMed] [Google Scholar]
  15. Lefebvre O., Wolf C., Limacher J. M., Hutin P., Wendling C., LeMeur M., Basset P., Rio M. C. The breast cancer-associated stromelysin-3 gene is expressed during mouse mammary gland apoptosis. J Cell Biol. 1992 Nov;119(4):997–1002. doi: 10.1083/jcb.119.4.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Masiakowski P., Breathnach R., Bloch J., Gannon F., Krust A., Chambon P. Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucleic Acids Res. 1982 Dec 20;10(24):7895–7903. doi: 10.1093/nar/10.24.7895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matrisian L. M. The matrix-degrading metalloproteinases. Bioessays. 1992 Jul;14(7):455–463. doi: 10.1002/bies.950140705. [DOI] [PubMed] [Google Scholar]
  18. Muller D., Wolf C., Abecassis J., Millon R., Engelmann A., Bronner G., Rouyer N., Rio M. C., Eber M., Methlin G. Increased stromelysin 3 gene expression is associated with increased local invasiveness in head and neck squamous cell carcinomas. Cancer Res. 1993 Jan 1;53(1):165–169. [PubMed] [Google Scholar]
  19. Murphy G., Segain J. P., O'Shea M., Cockett M., Ioannou C., Lefebvre O., Chambon P., Basset P. The 28-kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J Biol Chem. 1993 Jul 25;268(21):15435–15441. [PubMed] [Google Scholar]
  20. Noel A., Simon N., Raus J., Foidart J. M. Basement membrane components (matrigel) promote the tumorigenicity of human breast adenocarcinoma MCF7 cells and provide an in vivo model to assess the responsiveness of cells to estrogen. Biochem Pharmacol. 1992 Mar 17;43(6):1263–1267. doi: 10.1016/0006-2952(92)90501-9. [DOI] [PubMed] [Google Scholar]
  21. Noël A. C., Callé A., Emonard H. P., Nusgens B. V., Simar L., Foidart J., Lapiere C. M., Foidart J. M. Invasion of reconstituted basement membrane matrix is not correlated to the malignant metastatic cell phenotype. Cancer Res. 1991 Jan 1;51(1):405–414. [PubMed] [Google Scholar]
  22. Noël A., Santavicca M., Stoll I., L'Hoir C., Staub A., Murphy G., Rio M. C., Basset P. Identification of structural determinants controlling human and mouse stromelysin-3 proteolytic activities. J Biol Chem. 1995 Sep 29;270(39):22866–22872. doi: 10.1074/jbc.270.39.22866. [DOI] [PubMed] [Google Scholar]
  23. Patterton D., Hayes W. P., Shi Y. B. Transcriptional activation of the matrix metalloproteinase gene stromelysin-3 coincides with thyroid hormone-induced cell death during frog metamorphosis. Dev Biol. 1995 Jan;167(1):252–262. doi: 10.1006/dbio.1995.1021. [DOI] [PubMed] [Google Scholar]
  24. Pei D., Majmudar G., Weiss S. J. Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem. 1994 Oct 14;269(41):25849–25855. [PubMed] [Google Scholar]
  25. Pei D., Weiss S. J. Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature. 1995 May 18;375(6528):244–247. doi: 10.1038/375244a0. [DOI] [PubMed] [Google Scholar]
  26. Porte H., Chastre E., Prevot S., Nordlinger B., Empereur S., Basset P., Chambon P., Gespach C. Neoplastic progression of human colorectal cancer is associated with overexpression of the stromelysin-3 and BM-40/SPARC genes. Int J Cancer. 1995 Feb 20;64(1):70–75. doi: 10.1002/ijc.2910640114. [DOI] [PubMed] [Google Scholar]
  27. Powell W. C., Knox J. D., Navre M., Grogan T. M., Kittelson J., Nagle R. B., Bowden G. T. Expression of the metalloproteinase matrilysin in DU-145 cells increases their invasive potential in severe combined immunodeficient mice. Cancer Res. 1993 Jan 15;53(2):417–422. [PubMed] [Google Scholar]
  28. Raff M. C., Barres B. A., Burne J. F., Coles H. S., Ishizaki Y., Jacobson M. D. Programmed cell death and the control of cell survival: lessons from the nervous system. Science. 1993 Oct 29;262(5134):695–700. doi: 10.1126/science.8235590. [DOI] [PubMed] [Google Scholar]
  29. Rio M. C., Bellocq J. P., Gairard B., Rasmussen U. B., Krust A., Koehl C., Calderoli H., Schiff V., Renaud R., Chambon P. Specific expression of the pS2 gene in subclasses of breast cancers in comparison with expression of the estrogen and progesterone receptors and the oncogene ERBB2. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9243–9247. doi: 10.1073/pnas.84.24.9243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rodgers W. H., Matrisian L. M., Giudice L. C., Dsupin B., Cannon P., Svitek C., Gorstein F., Osteen K. G. Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones. J Clin Invest. 1994 Sep;94(3):946–953. doi: 10.1172/JCI117461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rouyer N., Wolf C., Chenard M. P., Rio M. C., Chambon P., Bellocq J. P., Basset P. Stromelysin-3 gene expression in human cancer: an overview. Invasion Metastasis. 1994;14(1-6):269–275. [PubMed] [Google Scholar]
  32. Rusciano D., Burger M. M. Why do cancer cells metastasize into particular organs? Bioessays. 1992 Mar;14(3):185–194. doi: 10.1002/bies.950140309. [DOI] [PubMed] [Google Scholar]
  33. Santavicca M., Noel A., Chenard M. P., Lutz Y., Stoll I., Segain J. P., Rouyer N., Rio M. C., Wolf C., Belloco J. P. Characterization of monoclonal antibodies against stromelysin-3 and their use to evaluate stromelysin-3 levels in breast carcinoma by semi-quantitative immunohistochemistry. Int J Cancer. 1995 Oct 20;64(5):336–341. doi: 10.1002/ijc.2910640510. [DOI] [PubMed] [Google Scholar]
  34. Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994 Jul 7;370(6484):61–65. doi: 10.1038/370061a0. [DOI] [PubMed] [Google Scholar]
  35. Stetler-Stevenson W. G., Aznavoorian S., Liotta L. A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 1993;9:541–573. doi: 10.1146/annurev.cb.09.110193.002545. [DOI] [PubMed] [Google Scholar]
  36. Takino T., Sato H., Shinagawa A., Seiki M. Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J Biol Chem. 1995 Sep 29;270(39):23013–23020. doi: 10.1074/jbc.270.39.23013. [DOI] [PubMed] [Google Scholar]
  37. Vakaet L., Jr, Vleminckx K., Van Roy F., Mareel M. Numerical evaluation of the invasion of closely related cell lines into collagen type I gels. Invasion Metastasis. 1991;11(5):249–260. [PubMed] [Google Scholar]
  38. Will H., Hinzmann B. cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment. Eur J Biochem. 1995 Aug 1;231(3):602–608. doi: 10.1111/j.1432-1033.1995.tb20738.x. [DOI] [PubMed] [Google Scholar]
  39. Witty J. P., McDonnell S., Newell K. J., Cannon P., Navre M., Tressler R. J., Matrisian L. M. Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Res. 1994 Sep 1;54(17):4805–4812. [PubMed] [Google Scholar]
  40. Wolf C., Chenard M. P., Durand de Grossouvre P., Bellocq J. P., Chambon P., Basset P. Breast-cancer-associated stromelysin-3 gene is expressed in basal cell carcinoma and during cutaneous wound healing. J Invest Dermatol. 1992 Dec;99(6):870–872. doi: 10.1111/1523-1747.ep12614846. [DOI] [PubMed] [Google Scholar]
  41. Yamamoto H., Itoh F., Hinoda Y., Imai K. Suppression of matrilysin inhibits colon cancer cell invasion in vitro. Int J Cancer. 1995 Apr 10;61(2):218–222. doi: 10.1002/ijc.2910610213. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES