Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Apr 15;97(8):1960–1968. doi: 10.1172/JCI118628

Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex.

D Marples 1, J Frøkiaer 1, J Dørup 1, M A Knepper 1, S Nielsen 1
PMCID: PMC507266  PMID: 8621781

Abstract

Prolonged hypokalemia causes vasopressin-resistant polyuria. We have recently shown that another cause of severe polyuria, chronic lithium therapy, is associated with decreased aquaporin-2 (AQP2) water channel expression (Marples, D., S. Christensen, E.I. Christensen, P.D. Ottosen, and S. Nielsen, 1995. J. Clin. Invest., 95: 1838-1845). Consequently, we studied the effect in rats of 11 days' potassium deprivation on urine production and AQP2 expression and distribution. Membrane fractions were prepared from one kidney, while the contralateral kidney was perfusion-fixed for immunocytochemistry. Immunoblotting and densitometry revealed a decrease in AQP2 levels to 27+/-3.4% of control levels (n=11, P<0.001) in inner medulla, and 34+/-15% of controls (n=5, P<0.05) in cortex. Urine production increased in parallel, from 11+/-1.4 to 30+/-4.4 ml/day (n=11, P<0.01). After return to a potassium-containing diet both urine output and AQP2 labels normalized within 7 d. Immunocytochemistry confirmed decreased AQP2 labeling in principal cells of both inner medullary and cortical collecting ducts. AQP2 labeling was predominantly associated with the apical plasma membrane and intracellular vesicles. Lithium treatment for 24 d caused a more extensive reduction of AQP2 levels, to 4+/-1% of control levels in the inner medulla and 4+/-2% in cortex, in association with severe polyuria. The similar degree of downregulation in medulla and cortex suggests that interstitial tonicity is not the major factor in the regulation of AQP2 expression. Consistent with this furosemide treatment did not alter AQP2 levels. In summary,hypokalemia, like lithium treatment, results in a decrease in AQP2 expression in rat collecting ducts, in parallel with the development of polyuria, and the degree of downregulation is consistent with the level of polyuria induced, supporting the view that there is a causative link.

Full Text

The Full Text of this article is available as a PDF (588.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aithal H. N., Toback F. G., Dube S., Getz G. S., Spargo B. H. Formation of renal medullary lysosomes during potassium depletion nephropathy. Lab Invest. 1977 Feb;36(2):107–113. [PubMed] [Google Scholar]
  2. Beck N., Webster S. K. Impaired urinary concentrating ability and cyclic AMP in K+-depleted rat kidney. Am J Physiol. 1976 Oct;231(4):1204–1208. doi: 10.1152/ajplegacy.1976.231.4.1204. [DOI] [PubMed] [Google Scholar]
  3. Berl T., Aisenbrey G. A., Linas S. L. Renal concentrating defect in the hypokalemic rat is prostaglandin independent. Am J Physiol. 1980 Jan;238(1):F37–F41. doi: 10.1152/ajprenal.1980.238.1.F37. [DOI] [PubMed] [Google Scholar]
  4. Carney S., Rayson B., Morgan T. A study in vitro of the concentrating defect associated with hypokalaemia and hypercalcaemia. Pflugers Arch. 1976 Oct 15;366(1):11–17. [PubMed] [Google Scholar]
  5. Christensen S., Kusano E., Yusufi A. N., Murayama N., Dousa T. P. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats. J Clin Invest. 1985 Jun;75(6):1869–1879. doi: 10.1172/JCI111901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deen P. M., Verdijk M. A., Knoers N. V., Wieringa B., Monnens L. A., van Os C. H., van Oost B. A. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science. 1994 Apr 1;264(5155):92–95. doi: 10.1126/science.8140421. [DOI] [PubMed] [Google Scholar]
  7. DiGiovanni S. R., Nielsen S., Christensen E. I., Knepper M. A. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8984–8988. doi: 10.1073/pnas.91.19.8984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. EPSTEIN F. H., KLEEMAN C. R., HENDRIKX A. The influence of bodily hydration on the renal concentrating process. J Clin Invest. 1957 May;36(5):629–634. doi: 10.1172/JCI103462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elger M., Bankir L., Kriz W. Morphometric analysis of kidney hypertrophy in rats after chronic potassium depletion. Am J Physiol. 1992 Apr;262(4 Pt 2):F656–F667. doi: 10.1152/ajprenal.1992.262.4.F656. [DOI] [PubMed] [Google Scholar]
  10. Fushimi K., Uchida S., Hara Y., Hirata Y., Marumo F., Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993 Feb 11;361(6412):549–552. doi: 10.1038/361549a0. [DOI] [PubMed] [Google Scholar]
  11. Gutsche H. U., Peterson L. N., Levine D. Z. In vivo evidence of impaired solute transport by the thick ascending limb in potassium-depleted rats. J Clin Invest. 1984 Apr;73(4):908–916. doi: 10.1172/JCI111314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Güllner H. G., Graf A. K., Gill J. R., Mitchell M. D. Hypokalaemia stimulates prostacyclin synthesis in the rat. Clin Sci (Lond) 1983 Jul;65(1):43–46. doi: 10.1042/cs0650043. [DOI] [PubMed] [Google Scholar]
  13. Hayashi M., Sasaki S., Tsuganezawa H., Monkawa T., Kitajima W., Konishi K., Fushimi K., Marumo F., Saruta T. Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. J Clin Invest. 1994 Nov;94(5):1778–1783. doi: 10.1172/JCI117525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kachadorian W. A., Muller J., DiScala V. A. Variability of cellular responsiveness to ADH stimulation in toad urinary bladder. Am J Physiol. 1989 Apr;256(4 Pt 2):F590–F595. doi: 10.1152/ajprenal.1989.256.4.F590. [DOI] [PubMed] [Google Scholar]
  15. Marples D., Christensen S., Christensen E. I., Ottosen P. D., Nielsen S. Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla. J Clin Invest. 1995 Apr;95(4):1838–1845. doi: 10.1172/JCI117863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marples D., Knepper M. A., Christensen E. I., Nielsen S. Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct. Am J Physiol. 1995 Sep;269(3 Pt 1):C655–C664. doi: 10.1152/ajpcell.1995.269.3.C655. [DOI] [PubMed] [Google Scholar]
  17. Nielsen S., Chou C. L., Marples D., Christensen E. I., Kishore B. K., Knepper M. A. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1013–1017. doi: 10.1073/pnas.92.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nielsen S., DiGiovanni S. R., Christensen E. I., Knepper M. A., Harris H. W. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11663–11667. doi: 10.1073/pnas.90.24.11663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nielsen S., Muller J., Knepper M. A. Vasopressin- and cAMP-induced changes in ultrastructure of isolated perfused inner medullary collecting ducts. Am J Physiol. 1993 Aug;265(2 Pt 2):F225–F238. doi: 10.1152/ajprenal.1993.265.2.F225. [DOI] [PubMed] [Google Scholar]
  20. Nielsen S., Smith B. L., Christensen E. I., Knepper M. A., Agre P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol. 1993 Jan;120(2):371–383. doi: 10.1083/jcb.120.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Raymond K. H., Davidson K. K., McKinney T. D. In vivo and in vitro studies of urinary concentrating ability in potassium-depleted rabbits. J Clin Invest. 1985 Aug;76(2):561–566. doi: 10.1172/JCI112007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raymond K. H., Lifschitz M. D., McKinney T. D. Prostaglandins and the urinary concentrating defect in potassium-depleted rabbits. Am J Physiol. 1987 Dec;253(6 Pt 2):F1113–F1119. doi: 10.1152/ajprenal.1987.253.6.F1113. [DOI] [PubMed] [Google Scholar]
  23. Sabolić I., Katsura T., Verbavatz J. M., Brown D. The AQP2 water channel: effect of vasopressin treatment, microtubule disruption, and distribution in neonatal rats. J Membr Biol. 1995 Feb;143(3):165–175. doi: 10.1007/BF00233445. [DOI] [PubMed] [Google Scholar]
  24. Sarkar K., Levine D. Z. A correlated study of kidney function and ultrastructure in potassium-depleted rats. Nephron. 1975;14(5):347–360. doi: 10.1159/000180465. [DOI] [PubMed] [Google Scholar]
  25. Sarkar K., Levine D. Z. Ultrastructural changes in the renal papillary cells of rats during maintenance and repair of profound potassium depletion. Br J Exp Pathol. 1979 Apr;60(2):120–129. [PMC free article] [PubMed] [Google Scholar]
  26. Yamamoto T., Sasaki S., Fushimi K., Ishibashi K., Yaoita E., Kawasaki K., Marumo F., Kihara I. Vasopressin increases AQP-CD water channel in apical membrane of collecting duct cells in Brattleboro rats. Am J Physiol. 1995 Jun;268(6 Pt 1):C1546–C1551. doi: 10.1152/ajpcell.1995.268.6.C1546. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES