Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 May 1;97(9):2011–2019. doi: 10.1172/JCI118636

The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis.

P Reboul 1, J P Pelletier 1, G Tardif 1, J M Cloutier 1, J Martel-Pelletier 1
PMCID: PMC507274  PMID: 8621789

Abstract

Recently, a new human collagenase, collagenase-3 has been identified. Since collagen changes are of particular importance in cartilage degeneration, we investigated if collagenase-3 plays a role in osteoarthritis (OA). Reverse transcriptase-PCR analysis revealed that in articular tissues collagenase-3 was expressed by the chondrocytes but not by the synoviocytes. Northern blot analysis of the chondrocyte mRNA revealed the presence of two major gene transcripts of 3.0 and 2.5 kb, and a third one of 2.2 kb was occasionally present. Compared to normal, OA showed a significantly higher (3.0 kb, P < or = 0.05; 2.5 kb, P < or = 0.03) level of collagenase-3 mRNA expression. Collagenase-3 had a higher catalytic velocity tate (about fivefold) than collagenase-1 on type II collagen. With the use of two specific antibodies, we showed that human chondrocytes had the ability to produce collagenase-3 as a proenzyme and as a glycosylated doublet. The chondrocyte collagenase-3 protein is produced in a significantly higher (P < or = 0.04) level in OA (approximately 9.5-fold) than in normal. The synthesis and expression of this new collagenase could also be modulated by two proinflammatory cytokines, IL-1 beta and TNF-alpha, in a time- and dose-dependent manner. This study provides novel and interesting data on collagenase-3 expression and synthesis in human cartilage cells and suggest its involvement in human OA cartilage patho-physiology.

Full Text

The Full Text of this article is available as a PDF (331.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson S. R., Conner G. E., Nagase H., Neuhaus I., Woessner J. F., Jr Characterization of rat uterine matrilysin and its cDNA. Relationship to human pump-1 and activation of procollagenases. J Biol Chem. 1995 Jul 7;270(27):16016–16022. doi: 10.1074/jbc.270.27.16016. [DOI] [PubMed] [Google Scholar]
  2. Aimes R. T., Quigley J. P. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem. 1995 Mar 17;270(11):5872–5876. doi: 10.1074/jbc.270.11.5872. [DOI] [PubMed] [Google Scholar]
  3. Altman R., Asch E., Bloch D., Bole G., Borenstein D., Brandt K., Christy W., Cooke T. D., Greenwald R., Hochberg M. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986 Aug;29(8):1039–1049. doi: 10.1002/art.1780290816. [DOI] [PubMed] [Google Scholar]
  4. Ayad S., Marriott A., Morgan K., Grant M. E. Bovine cartilage types VI and IX collagens. Characterization of their forms in vivo. Biochem J. 1989 Sep 15;262(3):753–761. doi: 10.1042/bj2620753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ben-Ze'ev A. Animal cell shape changes and gene expression. Bioessays. 1991 May;13(5):207–212. doi: 10.1002/bies.950130502. [DOI] [PubMed] [Google Scholar]
  6. Broquet P., George P., Geoffroy J., Reboul P., Louisot P. Study of O-glycan sialylation in C6 cultured glioma cells: evidence for post-translational regulation of a beta-galactoside alpha 2,3 sialyltransferase activity by N-glycosylation. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1437–1443. doi: 10.1016/0006-291x(91)91054-g. [DOI] [PubMed] [Google Scholar]
  7. Chen J. M., Aimes R. T., Ward G. R., Youngleib G. L., Quigley J. P. Isolation and characterization of a 70-kDa metalloprotease (gelatinase) that is elevated in Rous sarcoma virus-transformed chicken embryo fibroblasts. J Biol Chem. 1991 Mar 15;266(8):5113–5121. [PubMed] [Google Scholar]
  8. Dayer J. M., Demczuk S. Cytokines and other mediators in rheumatoid arthritis. Springer Semin Immunopathol. 1984;7(4):387–413. doi: 10.1007/BF00201968. [DOI] [PubMed] [Google Scholar]
  9. Dean D. D. Proteinase-mediated cartilage degradation in osteoarthritis. Semin Arthritis Rheum. 1991 Jun;20(6 Suppl 2):2–11. doi: 10.1016/0049-0172(91)90023-s. [DOI] [PubMed] [Google Scholar]
  10. Dixit S. N., Mainardi C. L., Seyer J. M., Kang A. H. Covalent structure of collagen: amino acid sequence of alpha 2-CB5 of chick skin collagen containing the animal collagenase cleavage site. Biochemistry. 1979 Nov 27;18(24):5416–5422. doi: 10.1021/bi00591a025. [DOI] [PubMed] [Google Scholar]
  11. Dodge G. R., Poole A. R. Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal, rheumatoid, and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin 1. J Clin Invest. 1989 Feb;83(2):647–661. doi: 10.1172/JCI113929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eyre D. R., Wu J. J., Apone S. A growing family of collagens in articular cartilage: identification of 5 genetically distinct types. J Rheumatol. 1987 May;14(Spec No):25–27. [PubMed] [Google Scholar]
  13. Fernandes J. C., Martel-Pelletier J., Otterness I. G., Lopez-Anaya A., Mineau F., Tardif G., Pelletier J. P. Effects of tenidap on canine experimental osteoarthritis. I. Morphologic and metalloprotease analysis. Arthritis Rheum. 1995 Sep;38(9):1290–1303. doi: 10.1002/art.1780380918. [DOI] [PubMed] [Google Scholar]
  14. Fini M. E., Karmilowicz M. J., Ruby P. L., Beeman A. M., Borges K. A., Brinckerhoff C. E. Cloning of a complementary DNA for rabbit proactivator. A metalloproteinase that activates synovial cell collagenase, shares homology with stromelysin and transin, and is coordinately regulated with collagenase. Arthritis Rheum. 1987 Nov;30(11):1254–1264. doi: 10.1002/art.1780301108. [DOI] [PubMed] [Google Scholar]
  15. Freije J. M., Díez-Itza I., Balbín M., Sánchez L. M., Blasco R., Tolivia J., López-Otín C. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem. 1994 Jun 17;269(24):16766–16773. [PubMed] [Google Scholar]
  16. Gunja-Smith Z., Nagase H., Woessner J. F., Jr Purification of the neutral proteoglycan-degrading metalloproteinase from human articular cartilage tissue and its identification as stromelysin matrix metalloproteinase-3. Biochem J. 1989 Feb 15;258(1):115–119. doi: 10.1042/bj2580115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harris E. D., Jr, Krane S. M. Collagenases (third of three parts). N Engl J Med. 1974 Sep 26;291(13):652–661. doi: 10.1056/NEJM197409262911305. [DOI] [PubMed] [Google Scholar]
  18. Hart G. W., Haltiwanger R. S., Holt G. D., Kelly W. G. Glycosylation in the nucleus and cytoplasm. Annu Rev Biochem. 1989;58:841–874. doi: 10.1146/annurev.bi.58.070189.004205. [DOI] [PubMed] [Google Scholar]
  19. Hofmann H., Fietzek P. P., Kühn K. The role of polar and hydrophobic interactions for the molecular packing of type I collagen: a three-dimensional evaluation of the amino acid sequence. J Mol Biol. 1978 Oct 25;125(2):137–165. doi: 10.1016/0022-2836(78)90342-x. [DOI] [PubMed] [Google Scholar]
  20. Hollander A. P., Heathfield T. F., Webber C., Iwata Y., Bourne R., Rorabeck C., Poole A. R. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest. 1994 Apr;93(4):1722–1732. doi: 10.1172/JCI117156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kempson G. E., Muir H., Pollard C., Tuke M. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta. 1973 Feb 28;297(2):456–472. doi: 10.1016/0304-4165(73)90093-7. [DOI] [PubMed] [Google Scholar]
  22. Kempson G. E., Tuke M. A., Dingle J. T., Barrett A. J., Horsfield P. H. The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage. Biochim Biophys Acta. 1976 May 28;428(3):741–760. doi: 10.1016/0304-4165(76)90205-1. [DOI] [PubMed] [Google Scholar]
  23. Khokha R., Denhardt D. T. Matrix metalloproteinases and tissue inhibitor of metalloproteinases: a review of their role in tumorigenesis and tissue invasion. Invasion Metastasis. 1989;9(6):391–405. [PubMed] [Google Scholar]
  24. Leco K. J., Khokha R., Pavloff N., Hawkes S. P., Edwards D. R. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem. 1994 Mar 25;269(12):9352–9360. [PubMed] [Google Scholar]
  25. MacDougall J. R., Kerbel R. S. Constitutive production of 92-kDa gelatinase B can be suppressed by alterations in cell shape. Exp Cell Res. 1995 Jun;218(2):508–515. doi: 10.1006/excr.1995.1185. [DOI] [PubMed] [Google Scholar]
  26. Martel-Pelletier J., McCollum R., Fujimoto N., Obata K., Cloutier J. M., Pelletier J. P. Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis. Lab Invest. 1994 Jun;70(6):807–815. [PubMed] [Google Scholar]
  27. Matrisian L. M. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 1990 Apr;6(4):121–125. doi: 10.1016/0168-9525(90)90126-q. [DOI] [PubMed] [Google Scholar]
  28. Mayne R. Cartilage collagens. What is their function, and are they involved in articular disease? Arthritis Rheum. 1989 Mar;32(3):241–246. doi: 10.1002/anr.1780320302. [DOI] [PubMed] [Google Scholar]
  29. Miller E. J., Gay S. The collagens: an overview and update. Methods Enzymol. 1987;144:3–41. doi: 10.1016/0076-6879(87)44170-0. [DOI] [PubMed] [Google Scholar]
  30. Miller E. J., Harris E. D., Jr, Chung E., Finch J. E., Jr, McCroskery P. A., Butler W. T. Cleavage of Type II and III collagens with mammalian collagenase: site of cleavage and primary structure at the NH2-terminal portion of the smaller fragment released from both collagens. Biochemistry. 1976 Feb 24;15(4):787–792. doi: 10.1021/bi00649a009. [DOI] [PubMed] [Google Scholar]
  31. Newman P., Watt F. M. Influence of cytochalasin D-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes. Exp Cell Res. 1988 Oct;178(2):199–210. doi: 10.1016/0014-4827(88)90391-6. [DOI] [PubMed] [Google Scholar]
  32. Nguyen Q., Mort J. S., Roughley P. J. Preferential mRNA expression of prostromelysin relative to procollagenase and in situ localization in human articular cartilage. J Clin Invest. 1992 Apr;89(4):1189–1197. doi: 10.1172/JCI115702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. O'Connell J. P., Willenbrock F., Docherty A. J., Eaton D., Murphy G. Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B. J Biol Chem. 1994 May 27;269(21):14967–14973. [PubMed] [Google Scholar]
  34. Okada Y., Morodomi T., Enghild J. J., Suzuki K., Yasui A., Nakanishi I., Salvesen G., Nagase H. Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties. Eur J Biochem. 1990 Dec 27;194(3):721–730. doi: 10.1111/j.1432-1033.1990.tb19462.x. [DOI] [PubMed] [Google Scholar]
  35. Okada Y., Shinmei M., Tanaka O., Naka K., Kimura A., Nakanishi I., Bayliss M. T., Iwata K., Nagase H. Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest. 1992 Jun;66(6):680–690. [PubMed] [Google Scholar]
  36. Okada Y., Takeuchi N., Tomita K., Nakanishi I., Nagase H. Immunolocalization of matrix metalloproteinase 3 (stromelysin) in rheumatoid synovioblasts (B cells): correlation with rheumatoid arthritis. Ann Rheum Dis. 1989 Aug;48(8):645–653. doi: 10.1136/ard.48.8.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Okada Y., Tsuchiya H., Shimizu H., Tomita K., Nakanishi I., Sato H., Seiki M., Yamashita K., Hayakawa T. Induction and stimulation of 92-kDa gelatinase/type IV collagenase production in osteosarcoma and fibrosarcoma cell lines by tumor necrosis factor alpha. Biochem Biophys Res Commun. 1990 Sep 14;171(2):610–617. doi: 10.1016/0006-291x(90)91190-4. [DOI] [PubMed] [Google Scholar]
  38. Pelletier J. P., Martel-Pelletier J., Altman R. D., Ghandur-Mnaymneh L., Howell D. S., Woessner J. F., Jr Collagenolytic activity and collagen matrix breakdown of the articular cartilage in the Pond-Nuki dog model of osteoarthritis. Arthritis Rheum. 1983 Jul;26(7):866–874. doi: 10.1002/art.1780260708. [DOI] [PubMed] [Google Scholar]
  39. Pelletier J. P., Roughley P. J., DiBattista J. A., McCollum R., Martel-Pelletier J. Are cytokines involved in osteoarthritic pathophysiology? Semin Arthritis Rheum. 1991 Jun;20(6 Suppl 2):12–25. doi: 10.1016/0049-0172(91)90024-t. [DOI] [PubMed] [Google Scholar]
  40. Pendás A. M., Matilla T., Estivill X., López-Otín C. The human collagenase-3 (CLG3) gene is located on chromosome 11q22.3 clustered to other members of the matrix metalloproteinase gene family. Genomics. 1995 Apr 10;26(3):615–618. doi: 10.1016/0888-7543(95)80186-p. [DOI] [PubMed] [Google Scholar]
  41. Poole C. A., Honda T., Skinner S. J., Schofield J. R., Hyde K. F., Shinkai H. Chondrons from articular cartilage (II): Analysis of the glycosaminoglycans in the cellular microenvironment of isolated canine chondrons. Connect Tissue Res. 1990;24(3-4):319–330. doi: 10.3109/03008209009152158. [DOI] [PubMed] [Google Scholar]
  42. Quinn C. O., Scott D. K., Brinckerhoff C. E., Matrisian L. M., Jeffrey J. J., Partridge N. C. Rat collagenase. Cloning, amino acid sequence comparison, and parathyroid hormone regulation in osteoblastic cells. J Biol Chem. 1990 Dec 25;265(36):22342–22347. [PubMed] [Google Scholar]
  43. Sadouk M. B., Pelletier J. P., Tardif G., Kiansa K., Cloutier J. M., Martel-Pelletier J. Human synovial fibroblasts coexpress IL-1 receptor type I and type II mRNA. The increased level of the IL-1 receptor in osteoarthritic cells is related to an increased level of the type I receptor. Lab Invest. 1995 Sep;73(3):347–355. [PubMed] [Google Scholar]
  44. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  45. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Watson P. A. Function follows form: generation of intracellular signals by cell deformation. FASEB J. 1991 Apr;5(7):2013–2019. doi: 10.1096/fasebj.5.7.1707019. [DOI] [PubMed] [Google Scholar]
  47. Welgus H. G., Jeffrey J. J., Eisen A. Z. Human skin fibroblast collagenase. Assessment of activation energy and deuterium isotope effect with collagenous substrates. J Biol Chem. 1981 Sep 25;256(18):9516–9521. [PubMed] [Google Scholar]
  48. Welgus H. G., Kobayashi D. K., Jeffrey J. J. The collagen substrate specificity of rat uterus collagenase. J Biol Chem. 1983 Dec 10;258(23):14162–14165. [PubMed] [Google Scholar]
  49. Wilhelm S. M., Collier I. E., Marmer B. L., Eisen A. Z., Grant G. A., Goldberg G. I. SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem. 1989 Oct 15;264(29):17213–17221. [PubMed] [Google Scholar]
  50. Woessner J. F., Jr Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991 May;5(8):2145–2154. [PubMed] [Google Scholar]
  51. Wolfe G. C., MacNaul K. L., Buechel F. F., McDonnell J., Hoerrner L. A., Lark M. W., Moore V. L., Hutchinson N. I. Differential in vivo expression of collagenase messenger RNA in synovium and cartilage. Quantitative comparison with stromelysin messenger RNA levels in human rheumatoid arthritis and osteoarthritis patients and in two animal models of acute inflammatory arthritis. Arthritis Rheum. 1993 Nov;36(11):1540–1547. doi: 10.1002/art.1780361108. [DOI] [PubMed] [Google Scholar]
  52. Wu J. J., Lark M. W., Chun L. E., Eyre D. R. Sites of stromelysin cleavage in collagen types II, IX, X, and XI of cartilage. J Biol Chem. 1991 Mar 25;266(9):5625–5628. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES